INTERACTIVE OBJECT SEGMENTATION WITH NOISY BINARY INPUTS

Gregory H. Canal, S. Manivasagam, Shaoheng Liang, C. Rozell
{"title":"INTERACTIVE OBJECT SEGMENTATION WITH NOISY BINARY INPUTS","authors":"Gregory H. Canal, S. Manivasagam, Shaoheng Liang, C. Rozell","doi":"10.1109/GLOBALSIP.2018.8646574","DOIUrl":null,"url":null,"abstract":"We consider the problem of interactively specifying an object segment in an image in an efficient and robust manner via binary inputs corrupted by noise. Our method frames interactive segmentation as a communications system with feedback and leverages a simple channel coding scheme to allow a user to select a segment from an ordered lexicon of segments for a given image. We propose an intuitive lexicon based on ellipses (EllipseLex) and evaluate its ability to specify desired object segments over increasing numbers of inputs at various levels of input noise, and compare it to a baseline algorithm. After evaluating the performance of each method on the Microsoft Common Objects in Context (MS-COCO) dataset using several metrics, we find that our method exhibits competitive performance when specifying real-world objects in images.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of interactively specifying an object segment in an image in an efficient and robust manner via binary inputs corrupted by noise. Our method frames interactive segmentation as a communications system with feedback and leverages a simple channel coding scheme to allow a user to select a segment from an ordered lexicon of segments for a given image. We propose an intuitive lexicon based on ellipses (EllipseLex) and evaluate its ability to specify desired object segments over increasing numbers of inputs at various levels of input noise, and compare it to a baseline algorithm. After evaluating the performance of each method on the Microsoft Common Objects in Context (MS-COCO) dataset using several metrics, we find that our method exhibits competitive performance when specifying real-world objects in images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有噪声二进制输入的交互式对象分割
我们考虑了通过被噪声破坏的二进制输入,以一种高效和鲁棒的方式交互式地指定图像中的目标段的问题。我们的方法将交互式分割作为具有反馈的通信系统,并利用简单的信道编码方案,允许用户从给定图像的有序片段词典中选择一个片段。我们提出了一个基于椭圆的直观词典(EllipseLex),并评估了它在不同输入噪声水平下指定所需对象段的能力,并将其与基线算法进行比较。在使用几个指标评估了每种方法在微软公共对象上下文(MS-COCO)数据集上的性能后,我们发现我们的方法在指定图像中的真实对象时表现出具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1