{"title":"Self-tuning parameter fuzzy PID controller for autonomous differential drive mobile robot","authors":"J. Heikkinen, T. Minav, A. Stotckaia","doi":"10.1109/SCM.2017.7970592","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to utilize the capabilities of a fuzzy PID controller for electric drives for a differential drive autonomous mobile robot trajectory application. The robot is powered by two non-identical electric motors. A self-tuning-parameter fuzzy PID controller is designed to control the rotation speed of the motors independently in order to achieve a straight trajectory of the motion despite the motor differences. Simulation of the robot drive system is carried out in a Matlab/Simulink environment. Simulations were used to evaluate performance of the fuzzy self-tuning parameter PID controllers in the time domain. Conclusions are drawn concerning the performance of the controller. Furthermore, expected challenges for the future development are discussed.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The purpose of this study is to utilize the capabilities of a fuzzy PID controller for electric drives for a differential drive autonomous mobile robot trajectory application. The robot is powered by two non-identical electric motors. A self-tuning-parameter fuzzy PID controller is designed to control the rotation speed of the motors independently in order to achieve a straight trajectory of the motion despite the motor differences. Simulation of the robot drive system is carried out in a Matlab/Simulink environment. Simulations were used to evaluate performance of the fuzzy self-tuning parameter PID controllers in the time domain. Conclusions are drawn concerning the performance of the controller. Furthermore, expected challenges for the future development are discussed.