Actor-Critic TD3-based Deep Reinforcement Learning for Energy Management Strategy of HEV

Ozan Yazar, S. Coskun, Lin Li, Feng Zhang, Cong Huang
{"title":"Actor-Critic TD3-based Deep Reinforcement Learning for Energy Management Strategy of HEV","authors":"Ozan Yazar, S. Coskun, Lin Li, Feng Zhang, Cong Huang","doi":"10.1109/HORA58378.2023.10156727","DOIUrl":null,"url":null,"abstract":"In the last decade, deep reinforcement learning (DRL) algorithms have been employed in the design of energy management strategy (EMS) for hybrid electric vehicles (HEVs). Investigation of the real-time applicability of DRL algorithms as an EMS is critical in terms of training time, fuel savings, and state-of-charge (SOC) sustainability. To this end, we propose a twin delayed deep deterministic policy gradient (TD3) algorithm that is an improved version of the deep deterministic policy gradient (DDPG) algorithm for HEV fuel savings. Compared to the existing Q-learning-based reinforcement learning and the deep Q-network-based and DDPG-based deep reinforcement algorithms, the proposed TD3 provides stable training efficiency, promising fuel economy, and a lower variation range of SOC charge sustainability under various drive cycles.","PeriodicalId":247679,"journal":{"name":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HORA58378.2023.10156727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decade, deep reinforcement learning (DRL) algorithms have been employed in the design of energy management strategy (EMS) for hybrid electric vehicles (HEVs). Investigation of the real-time applicability of DRL algorithms as an EMS is critical in terms of training time, fuel savings, and state-of-charge (SOC) sustainability. To this end, we propose a twin delayed deep deterministic policy gradient (TD3) algorithm that is an improved version of the deep deterministic policy gradient (DDPG) algorithm for HEV fuel savings. Compared to the existing Q-learning-based reinforcement learning and the deep Q-network-based and DDPG-based deep reinforcement algorithms, the proposed TD3 provides stable training efficiency, promising fuel economy, and a lower variation range of SOC charge sustainability under various drive cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Actor-Critic td3的HEV能量管理策略深度强化学习
在过去的十年中,深度强化学习(DRL)算法被应用于混合动力汽车(hev)的能量管理策略(EMS)设计中。研究DRL算法作为EMS的实时适用性对于训练时间、燃料节约和充电状态(SOC)可持续性至关重要。为此,我们提出了一种双延迟深度确定性策略梯度(TD3)算法,该算法是用于HEV节油的深度确定性策略梯度(DDPG)算法的改进版本。与现有的基于q -learning的强化学习算法、基于深度q -network的深度强化学习算法和基于ddpg的深度强化算法相比,TD3具有稳定的训练效率、良好的燃油经济性和较低的不同驱动循环下SOC充电可持续性变化范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Urban Sounds with PSO and WO Based Feature Selection Methods Modeling a system determining the fastest way to get from one point to another by public transport NNA and Activation Equation-Based Prediction of New COVID-19 Infections Plaka tanıma sistemleri ve hibrit bir sistem önerisi Color Image Encryption Using a Sine Variation of the Logistic Map for S-Box and Key Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1