Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions

Ehsan Yazdian, M. Bastani, S. Gazor
{"title":"Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions","authors":"Ehsan Yazdian, M. Bastani, S. Gazor","doi":"10.1109/SiPS.2012.15","DOIUrl":null,"url":null,"abstract":"This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
样本匮乏条件下基于特征值矩的大阵列源枚举
本文提出了一种利用相对较少的样本来枚举高维均匀线性阵列上的入射波的方法。该方法基于最小描述长度(MDL)准则和样本协方差矩阵(SCM)特征值的统计性质。我们假设几个模型相互竞争,每个模型代表一定数量的资源,MDL准则将选择具有最小模型复杂性和最大模型决策的最佳模型。无信号单片机噪声特征值的统计量可以用Marcenko-Pastur分布给出的特征值的分布性质来近似。本文利用随机矩阵理论确定单片机噪声特征值矩的统计性质,实现了噪声与信号特征值的分离。通过数值模拟,比较了该估计器在样本匮乏状态下与其他一些计数器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of Multi-sensor Images Based on PCA and Self-Adaptive Regional Variance Estimation Frequency Shift Detection of Speech with GMMs AND SVMs Noise-Resistant Mobile Positioning System Based on Code-Aided RSS Estimation Speech/Audio Signal Classification Using Spectral Flux Pattern Recognition Error Floor Compensation for LDPC Codes Using Concatenated Schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1