Self-Sustainability in Nano Unmanned Aerial Vehicles: A Blimp Case Study

D. Palossi, Andres Gomez, Stefan Draskovic, K. Keller, L. Benini, L. Thiele
{"title":"Self-Sustainability in Nano Unmanned Aerial Vehicles: A Blimp Case Study","authors":"D. Palossi, Andres Gomez, Stefan Draskovic, K. Keller, L. Benini, L. Thiele","doi":"10.1145/3075564.3075580","DOIUrl":null,"url":null,"abstract":"Nowadays nano Unmanned Aerial Vehicles (UAV's), such as quad-copters, have very limited flight times, tens of minutes at most. The main constraints are energy density of the batteries and the engine power required for flight. In this work, we present a nano-sized blimp platform, consisting of a helium balloon and a rotorcraft. Thanks to the lift provided by helium, the blimp requires relatively little energy to remain at a stable altitude. We also introduce the concept of duty-cycling high power actuators, to reduce the energy requirements for hovering even further. With the addition of a solar panel, it is even feasible to sustain tens or hundreds of flight hours in modest lighting conditions (including indoor usage). A functioning 52 gram prototype was thoroughly characterized and its lifetime was measured in different harvesting conditions. Both our system model and the experimental results indicate our proposed platform requires less than 200 mW to hover in a self sustainable fashion. This represents, to the best of our knowledge, the first nano-size UAV for long term hovering with low power requirements.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Nowadays nano Unmanned Aerial Vehicles (UAV's), such as quad-copters, have very limited flight times, tens of minutes at most. The main constraints are energy density of the batteries and the engine power required for flight. In this work, we present a nano-sized blimp platform, consisting of a helium balloon and a rotorcraft. Thanks to the lift provided by helium, the blimp requires relatively little energy to remain at a stable altitude. We also introduce the concept of duty-cycling high power actuators, to reduce the energy requirements for hovering even further. With the addition of a solar panel, it is even feasible to sustain tens or hundreds of flight hours in modest lighting conditions (including indoor usage). A functioning 52 gram prototype was thoroughly characterized and its lifetime was measured in different harvesting conditions. Both our system model and the experimental results indicate our proposed platform requires less than 200 mW to hover in a self sustainable fashion. This represents, to the best of our knowledge, the first nano-size UAV for long term hovering with low power requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米无人机的自我可持续性:一个飞艇案例研究
目前,纳米无人机(UAV),如四旋翼飞行器,飞行时间非常有限,最多几十分钟。主要的限制因素是电池的能量密度和飞行所需的发动机功率。在这项工作中,我们提出了一个纳米级的飞艇平台,由一个氦气球和一个旋翼机组成。由于氦气提供的升力,飞艇需要相对较少的能量来保持在稳定的高度。我们还引入了占空比大功率执行器的概念,以进一步降低悬停时的能量需求。加上太阳能电池板,它甚至可以在适度的照明条件下(包括室内使用)维持数十或数百小时的飞行。一个功能52克原型进行了彻底表征,其寿命在不同的收获条件下进行了测量。我们的系统模型和实验结果都表明,我们提出的平台需要不到200兆瓦的能量才能以自我可持续的方式悬停。据我们所知,这是第一架纳米级无人机,可以在低功率条件下长期悬停。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1