A comparison of machine learning techniques for phishing detection

Saeed Abu-Nimeh, D. Nappa, Xinlei Wang, S. Nair
{"title":"A comparison of machine learning techniques for phishing detection","authors":"Saeed Abu-Nimeh, D. Nappa, Xinlei Wang, S. Nair","doi":"10.1145/1299015.1299021","DOIUrl":null,"url":null,"abstract":"There are many applications available for phishing detection. However, unlike predicting spam, there are only few studies that compare machine learning techniques in predicting phishing. The present study compares the predictive accuracy of several machine learning methods including Logistic Regression (LR), Classification and Regression Trees (CART), Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random Forests (RF), and Neural Networks (NNet) for predicting phishing emails. A data set of 2889 phishing and legitimate emails is used in the comparative study. In addition, 43 features are used to train and test the classifiers.","PeriodicalId":130252,"journal":{"name":"APWG Symposium on Electronic Crime Research","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"426","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APWG Symposium on Electronic Crime Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1299015.1299021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 426

Abstract

There are many applications available for phishing detection. However, unlike predicting spam, there are only few studies that compare machine learning techniques in predicting phishing. The present study compares the predictive accuracy of several machine learning methods including Logistic Regression (LR), Classification and Regression Trees (CART), Bayesian Additive Regression Trees (BART), Support Vector Machines (SVM), Random Forests (RF), and Neural Networks (NNet) for predicting phishing emails. A data set of 2889 phishing and legitimate emails is used in the comparative study. In addition, 43 features are used to train and test the classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络钓鱼检测的机器学习技术比较
有许多可用于网络钓鱼检测的应用程序。然而,与预测垃圾邮件不同的是,只有很少的研究将机器学习技术用于预测网络钓鱼。本研究比较了几种机器学习方法的预测准确性,包括逻辑回归(LR)、分类与回归树(CART)、贝叶斯加性回归树(BART)、支持向量机(SVM)、随机森林(RF)和神经网络(NNet),用于预测网络钓鱼邮件。以2889封钓鱼邮件和合法邮件为数据集进行对比研究。此外,还使用了43个特征来训练和测试分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fighting unicode-obfuscated spam Evaluating a trial deployment of password re-use for phishing prevention Behavioral response to phishing risk Fishing for phishes: applying capture-recapture methods to estimate phishing populations A comparison of machine learning techniques for phishing detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1