Greedy Recovery of Sparse Signals with Dynamically Varying Support

Sun Hong Lim, J. Yoo, Sunwoo Kim, J. Choi
{"title":"Greedy Recovery of Sparse Signals with Dynamically Varying Support","authors":"Sun Hong Lim, J. Yoo, Sunwoo Kim, J. Choi","doi":"10.23919/EUSIPCO.2018.8553450","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a low-complexity greedy recovery algorithm which can recover sparse signals with time-varying support. We consider the scenario where the support of the signal (i.e., the indices of nonzero elements) varies smoothly with certain temporal correlation. We model the indices of support as discrete-state Markov random process. Then, we formulate the signal recovery problem as joint estimation of the set of the support indices and the amplitude of nonzero entries based on the multiple measurement vectors. We successively identify the element of the support based on the maximum a posteriori (MAP) criteria and subtract the reconstructed signal component for detection of the next element of the support. Our numerical evaluation shows that the proposed algorithm achieves satisfactory recovery performance at low computational complexity.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a low-complexity greedy recovery algorithm which can recover sparse signals with time-varying support. We consider the scenario where the support of the signal (i.e., the indices of nonzero elements) varies smoothly with certain temporal correlation. We model the indices of support as discrete-state Markov random process. Then, we formulate the signal recovery problem as joint estimation of the set of the support indices and the amplitude of nonzero entries based on the multiple measurement vectors. We successively identify the element of the support based on the maximum a posteriori (MAP) criteria and subtract the reconstructed signal component for detection of the next element of the support. Our numerical evaluation shows that the proposed algorithm achieves satisfactory recovery performance at low computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有动态变化支持度的稀疏信号贪婪恢复
本文提出了一种低复杂度贪婪恢复算法,该算法可以恢复具有时变支持的稀疏信号。我们考虑信号的支持度(即非零元素的指标)随一定的时间相关性平滑变化的情况。我们将支持度指标建模为离散状态马尔可夫随机过程。然后,我们将信号恢复问题表述为基于多个测量向量的支持指标集和非零分量幅值的联合估计。我们依次根据最大后验(MAP)准则识别支撑元素,并减去重构信号分量,用于检测下一个支撑元素。数值计算结果表明,该算法在较低的计算复杂度下取得了令人满意的恢复性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1