{"title":"Construction progress visualisation for varied stages of the individual elements with BIM: A case study","authors":"Daniel Kazado, M. Kavgic, E. Ergen","doi":"10.35490/EC3.2019.172","DOIUrl":null,"url":null,"abstract":"Building information modeling (BIM) ?is an intelligent 3D design and modeling process that gives architects, engineers, construction and facility managers the ability and tools to plan, design, construct and manage buildings more effectively and efficiently. Currently, the construction progress is monitored by comparing the baseline project schedules, which include the planned dates and resources, with the actual dates in the updated schedules. 4D scheduling is used in the construction industry for linking individual model elements with the schedule activities to visualize the progress of construction activities. Also, it provides analyzing tools in the 3D environment to improve the efficiency of project management, such as earned value analysis, project critical path analysis, and analysis of resource allocation. However, the limitation of this approach is a need for the creation of a dedicated activity for monitoring each model element, which can result in an excessive number of activities. Similarly, the required volume of data limits the generation of a dedicated activity for multiple statuses of building elements, such as “testing an element,” and “inspecting an element’. This paper presents a construction progress visualization method, which uses a custom developed add-in to present the status of building elements (e.g., planned, installed) without linking them with the schedule. The new tool enables a visual presentation of the progress of each element within the BIM model during different stages of the construction process to increase the decision-making capabilities. A case study is used to demonstrate the capabilities of the developed BIM add-in tool for construction progress visualization.","PeriodicalId":126601,"journal":{"name":"Proceedings of the 2019 European Conference on Computing in Construction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 European Conference on Computing in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35490/EC3.2019.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Building information modeling (BIM) ?is an intelligent 3D design and modeling process that gives architects, engineers, construction and facility managers the ability and tools to plan, design, construct and manage buildings more effectively and efficiently. Currently, the construction progress is monitored by comparing the baseline project schedules, which include the planned dates and resources, with the actual dates in the updated schedules. 4D scheduling is used in the construction industry for linking individual model elements with the schedule activities to visualize the progress of construction activities. Also, it provides analyzing tools in the 3D environment to improve the efficiency of project management, such as earned value analysis, project critical path analysis, and analysis of resource allocation. However, the limitation of this approach is a need for the creation of a dedicated activity for monitoring each model element, which can result in an excessive number of activities. Similarly, the required volume of data limits the generation of a dedicated activity for multiple statuses of building elements, such as “testing an element,” and “inspecting an element’. This paper presents a construction progress visualization method, which uses a custom developed add-in to present the status of building elements (e.g., planned, installed) without linking them with the schedule. The new tool enables a visual presentation of the progress of each element within the BIM model during different stages of the construction process to increase the decision-making capabilities. A case study is used to demonstrate the capabilities of the developed BIM add-in tool for construction progress visualization.