Kalman Filter Based Extended Object Tracking with a Gaussian Mixture Spatial Distribution Model

Kolja Thormann, Shishan Yang, M. Baum
{"title":"Kalman Filter Based Extended Object Tracking with a Gaussian Mixture Spatial Distribution Model","authors":"Kolja Thormann, Shishan Yang, M. Baum","doi":"10.1109/ivworkshops54471.2021.9669221","DOIUrl":null,"url":null,"abstract":"Extended object tracking methods are often based on the assumption that the measurements are uniformly distributed on the target object. However, this assumption is often invalid for applications using automotive radar or lidar data. Instead, there is a bias towards the side of the object that is visible to the sensor. To handle this challenge, we employ a Gaussian Mixture (GM) density to model a more detailed measurement distribution across the surface and extend a recent Kalman filter based elliptic object tracker called MEM-EKF* to get a closed-form solution for the measurement update. An evaluation of the proposed approach compared with classic elliptic trackers and a recent truncation-based approach is conducted on simulated data.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extended object tracking methods are often based on the assumption that the measurements are uniformly distributed on the target object. However, this assumption is often invalid for applications using automotive radar or lidar data. Instead, there is a bias towards the side of the object that is visible to the sensor. To handle this challenge, we employ a Gaussian Mixture (GM) density to model a more detailed measurement distribution across the surface and extend a recent Kalman filter based elliptic object tracker called MEM-EKF* to get a closed-form solution for the measurement update. An evaluation of the proposed approach compared with classic elliptic trackers and a recent truncation-based approach is conducted on simulated data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼滤波的高斯混合空间分布模型扩展目标跟踪
扩展目标跟踪方法通常基于测量值均匀分布在目标对象上的假设。然而,对于使用汽车雷达或激光雷达数据的应用来说,这种假设通常是无效的。相反,有一个偏向物体的一面,是可见的传感器。为了应对这一挑战,我们采用高斯混合(GM)密度来模拟整个表面上更详细的测量分布,并扩展了最近基于卡尔曼滤波的椭圆目标跟踪器memm - ekf *,以获得测量更新的封闭形式解决方案。在仿真数据上,将该方法与经典椭圆跟踪器和最近的基于截断的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory Planning with Comfort and Safety in Dynamic Traffic Scenarios for Autonomous Driving Unsupervised Joint Multi-Task Learning of Vision Geometry Tasks An adaptive cooperative adaptive cruise control against varying vehicle loads* Fundamental Design Criteria for Logical Scenarios in Simulation-based Safety Validation of Automated Driving Using Sensor Model Knowledge Parameter-Based Testing and Debugging of Autonomous Driving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1