Artificial Intelligence Assisted Malware Analysis

Mahmoud Abdelsalam, Maanak Gupta, Sudip Mittal
{"title":"Artificial Intelligence Assisted Malware Analysis","authors":"Mahmoud Abdelsalam, Maanak Gupta, Sudip Mittal","doi":"10.1145/3445969.3450433","DOIUrl":null,"url":null,"abstract":"This tutorial provides a review of the state-of-the-art research and the applications of Artificial Intelligence and Machine Learning for malware analysis. We will provide an overview, background and results with respect to the three main malware analysis approaches: static malware analysis, dynamic malware analysis and online malware analysis. Further, we will provide a simplified hands-on tutorial of applying ML algorithm for dynamic malware analysis in cloud IaaS.","PeriodicalId":103324,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3445969.3450433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This tutorial provides a review of the state-of-the-art research and the applications of Artificial Intelligence and Machine Learning for malware analysis. We will provide an overview, background and results with respect to the three main malware analysis approaches: static malware analysis, dynamic malware analysis and online malware analysis. Further, we will provide a simplified hands-on tutorial of applying ML algorithm for dynamic malware analysis in cloud IaaS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能辅助恶意软件分析
本教程回顾了最新的研究以及人工智能和机器学习在恶意软件分析中的应用。我们将提供关于三种主要恶意软件分析方法的概述,背景和结果:静态恶意软件分析,动态恶意软件分析和在线恶意软件分析。此外,我们将提供在云IaaS中应用ML算法进行动态恶意软件分析的简化实践教程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability Assessment of the Rowhammer Attack Using Machine Learning and the gem5 Simulator - Work in Progress Trustworthy Data Analysis and Sensor Data Protection in Cyber-Physical Systems The HABAC Model for Smart Home IoT and Comparison to EGRBAC A Matrix for Systematic Selection of Authentication Mechanisms in Challenging Healthcare related Environments Transparent End-to-End Security for Publish/Subscribe Communication in Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1