Using Advanced Code Analysis for Boosting Unit Test Creation

M. Zielinski, R. Groenboom
{"title":"Using Advanced Code Analysis for Boosting Unit Test Creation","authors":"M. Zielinski, R. Groenboom","doi":"10.1109/ICSTW52544.2021.00053","DOIUrl":null,"url":null,"abstract":"Unit testing is a popular testing technique, widespread in enterprise IT and embedded/safety-critical. For enterprise IT, unit testing is considered to be good practice and is frequently followed as an element of test-driven development. In the safety-critical world, there are many standards, such as ISO 26262, IEC 61508, and others, that either directly or indirectly mandate unit testing. Regardless the area of the application, unit testing is very time-consuming and teams are looking for strategies to optimize their efforts. This is especially true in the safety-critical space, where demonstration of test coverage is required for the certification. In this presentation, we share the results of our research regarding the use of advanced code analysis algorithms for augmenting the process of unit test creation. The discussion includes automatic discovery of inputs and responses from mocked components that maximize the code coverage and automated generation of the test cases.","PeriodicalId":371680,"journal":{"name":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW52544.2021.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Unit testing is a popular testing technique, widespread in enterprise IT and embedded/safety-critical. For enterprise IT, unit testing is considered to be good practice and is frequently followed as an element of test-driven development. In the safety-critical world, there are many standards, such as ISO 26262, IEC 61508, and others, that either directly or indirectly mandate unit testing. Regardless the area of the application, unit testing is very time-consuming and teams are looking for strategies to optimize their efforts. This is especially true in the safety-critical space, where demonstration of test coverage is required for the certification. In this presentation, we share the results of our research regarding the use of advanced code analysis algorithms for augmenting the process of unit test creation. The discussion includes automatic discovery of inputs and responses from mocked components that maximize the code coverage and automated generation of the test cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用高级代码分析促进单元测试创建
单元测试是一种流行的测试技术,广泛应用于企业IT和嵌入式/安全关键领域。对于企业IT来说,单元测试被认为是一种很好的实践,并且经常作为测试驱动开发的一个元素来遵循。在安全关键领域,有许多标准,如ISO 26262、IEC 61508等,直接或间接地要求进行单元测试。不管应用程序的哪个领域,单元测试都是非常耗时的,团队正在寻找策略来优化他们的工作。在安全关键领域尤其如此,因为认证需要测试覆盖的演示。在这次演讲中,我们将分享我们关于使用高级代码分析算法来增加单元测试创建过程的研究结果。讨论包括自动发现来自模拟组件的输入和响应,这些组件最大限度地提高了代码覆盖率,并自动生成测试用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectively Sampling Higher Order Mutants Using Causal Effect Syntax-Tree Similarity for Test-Case Derivability in Software Requirements Automatic Equivalent Mutants Classification Using Abstract Syntax Tree Neural Networks Online GANs for Automatic Performance Testing A Combinatorial Approach to Explaining Image Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1