Identification of Malicious Web Pages with Static Heuristics

C. Seifert, Ian Welch, P. Komisarczuk
{"title":"Identification of Malicious Web Pages with Static Heuristics","authors":"C. Seifert, Ian Welch, P. Komisarczuk","doi":"10.1109/ATNAC.2008.4783302","DOIUrl":null,"url":null,"abstract":"Malicious web pages that launch client-side attacks on web browsers have become an increasing problem in recent years. High-interaction client honeypots are security devices that can detect these malicious web pages on a network. However, high-interaction client honeypots are both resource-intensive and known to miss attacks. This paper presents a novel classification method for detecting malicious web pages that involves inspecting the underlying static attributes of the initial HTTP response and HTML code. Because malicious web pages import exploits from remote resources and hide exploit code, static attributes characterizing these actions can be used to identify a majority of malicious web pages. Combining high-interaction client honeypots and this new classification method into a hybrid system leads to significant performance improvements.","PeriodicalId":143803,"journal":{"name":"2008 Australasian Telecommunication Networks and Applications Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Australasian Telecommunication Networks and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2008.4783302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

Malicious web pages that launch client-side attacks on web browsers have become an increasing problem in recent years. High-interaction client honeypots are security devices that can detect these malicious web pages on a network. However, high-interaction client honeypots are both resource-intensive and known to miss attacks. This paper presents a novel classification method for detecting malicious web pages that involves inspecting the underlying static attributes of the initial HTTP response and HTML code. Because malicious web pages import exploits from remote resources and hide exploit code, static attributes characterizing these actions can be used to identify a majority of malicious web pages. Combining high-interaction client honeypots and this new classification method into a hybrid system leads to significant performance improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于静态启发式的恶意网页识别
近年来,针对web浏览器发起客户端攻击的恶意网页已成为日益严重的问题。高交互客户端蜜罐是一种安全设备,可以检测网络上的这些恶意网页。然而,高交互的客户端蜜罐是资源密集型的,并且很容易错过攻击。本文提出了一种检测恶意网页的新分类方法,该方法包括检查初始HTTP响应和HTML代码的底层静态属性。由于恶意网页从远程资源导入漏洞并隐藏漏洞代码,因此可以使用描述这些行为的静态属性来识别大多数恶意网页。将高交互客户端蜜罐和这种新的分类方法结合到一个混合系统中,可以显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bluetooth Information Exchange Network Identification of Malicious Web Pages with Static Heuristics Self-restraint Admission Control for adhoc WLANs Voice Activity Detection Using Entropy in Spectrum Domain Performance Improvement of Cooperative Relaying Scheme Based on OFCDM in UWB Channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1