Alexander Stegmeier, Jörg Mische, Martin Frieb, T. Ungerer
{"title":"WCTT bounds for MPI primitives in the PaterNoster NoC","authors":"Alexander Stegmeier, Jörg Mische, Martin Frieb, T. Ungerer","doi":"10.1145/3015037.3015041","DOIUrl":null,"url":null,"abstract":"This paper applies several variants of application independent time-division multiplexing to MPI primitives and investigates their applicability for different scopes of communication. Thereby, the scopes are characterized by the size of the network-on-chip, the number of participating nodes and the message size sent to each receiver or received from each sender, respectively. The evaluation shows that none of the observed variants feature the lowest worst-case traversal time in all situations. Instead there are multiple schedule variants which each perform best in a different scope of communication parameters.","PeriodicalId":447904,"journal":{"name":"SIGBED Rev.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGBED Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3015037.3015041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper applies several variants of application independent time-division multiplexing to MPI primitives and investigates their applicability for different scopes of communication. Thereby, the scopes are characterized by the size of the network-on-chip, the number of participating nodes and the message size sent to each receiver or received from each sender, respectively. The evaluation shows that none of the observed variants feature the lowest worst-case traversal time in all situations. Instead there are multiple schedule variants which each perform best in a different scope of communication parameters.