Model-driven software engineering in practice: privacy-enhanced filtering of network traffic

Roel van Dijk, Christophe Creeten, J. V. D. Ham, J. V. D. Bos
{"title":"Model-driven software engineering in practice: privacy-enhanced filtering of network traffic","authors":"Roel van Dijk, Christophe Creeten, J. V. D. Ham, J. V. D. Bos","doi":"10.1145/3106237.3117777","DOIUrl":null,"url":null,"abstract":"Network traffic data contains a wealth of information for use in security analysis and application development. Unfortunately, it also usually contains confidential or otherwise sensitive information, prohibiting sharing and analysis. Existing automated anonymization solutions are hard to maintain and tend to be outdated. We present Privacy-Enhanced Filtering (PEF), a model-driven prototype framework that relies on declarative descriptions of protocols and a set of filter rules, which are used to automatically transform network traffic data to remove sensitive information. This paper discusses the design, implementation and application of PEF, which is available as open-source software and configured for use in a typical malware detection scenario.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3117777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network traffic data contains a wealth of information for use in security analysis and application development. Unfortunately, it also usually contains confidential or otherwise sensitive information, prohibiting sharing and analysis. Existing automated anonymization solutions are hard to maintain and tend to be outdated. We present Privacy-Enhanced Filtering (PEF), a model-driven prototype framework that relies on declarative descriptions of protocols and a set of filter rules, which are used to automatically transform network traffic data to remove sensitive information. This paper discusses the design, implementation and application of PEF, which is available as open-source software and configured for use in a typical malware detection scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型驱动软件工程的实践:网络流量的隐私增强过滤
网络流量数据包含大量用于安全分析和应用程序开发的信息。不幸的是,它通常也包含机密或其他敏感信息,禁止共享和分析。现有的自动化匿名化解决方案很难维护,而且往往已经过时。我们提出了隐私增强过滤(PEF),这是一个模型驱动的原型框架,它依赖于协议的声明性描述和一组过滤规则,用于自动转换网络流量数据以去除敏感信息。本文讨论了PEF的设计、实现和应用,PEF作为开源软件,配置用于典型的恶意软件检测场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Serverless computing: economic and architectural impact The rising tide lifts all boats: the advancement of science in cyber security (invited talk) User- and analysis-driven context aware software development in mobile computing Continuous variable-specific resolutions of feature interactions Attributed variability models: outside the comfort zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1