{"title":"Characterization of beam splitter using Mueller matrix ellipsometry","authors":"Song Zhang, Jiamin Liu, Hao Jiang, Shiyuan Liu","doi":"10.1117/12.2511510","DOIUrl":null,"url":null,"abstract":"Polarization distortion is a phenomenon which the polarization state of output light deviates from the theoretical expectation. Due to the design defects and process limitations, polarization distortion in beam splitter is inevitable, which results in the significant errors in the optical systems. A theoretical analysis method based on Mueller matrix is proposed for characterizing the beam splitter. In the propose approach, polarization distortion in the beam splitter including depolarization, linear and circular birefringence, and linear diattenuation, circular dichroism have been considered. With the proposed method, we can characterize the beam splitters and extract the related effective optical parameters of polarization distortion. The Mueller matrices of two different commonly used beam splitters measured by a commercial Mueller matrix ellipsometer (MME) are consistently fitted by the proposed method and the residual errors have shown the improvement compared to the conventional methods.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"11053 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polarization distortion is a phenomenon which the polarization state of output light deviates from the theoretical expectation. Due to the design defects and process limitations, polarization distortion in beam splitter is inevitable, which results in the significant errors in the optical systems. A theoretical analysis method based on Mueller matrix is proposed for characterizing the beam splitter. In the propose approach, polarization distortion in the beam splitter including depolarization, linear and circular birefringence, and linear diattenuation, circular dichroism have been considered. With the proposed method, we can characterize the beam splitters and extract the related effective optical parameters of polarization distortion. The Mueller matrices of two different commonly used beam splitters measured by a commercial Mueller matrix ellipsometer (MME) are consistently fitted by the proposed method and the residual errors have shown the improvement compared to the conventional methods.