{"title":"Noise degradation of cascodes in broadband power amplifiers","authors":"T. Huber, R. Quay, W. Bösch","doi":"10.1109/INMMIC.2017.7927298","DOIUrl":null,"url":null,"abstract":"This paper compares the noise performance of the common-source and the cascode topology. Although the cascode topology has several advantages over the common-source stage, the noise performance degrades due to the channel noise and the induced gate noise of the common-gate stage. To underline the theory two multi-decade GaN feedback power amplifiers were designed in common-source and cascode topology, using a submicron AlGaN/GaN MMIC technology on SiC substrate. Both designs achieve 13 dB gain and simultaneously good input and output matching. The 3 dB cutoff frequency of the common-source design is 12 GHz and the cascode feedback amplifier achieves even 17 GHz. At mid-band the common-source and the cascode design achieve a moderate noise figure of 3 dB and 4 dB while maintaining an output power over the complete frequency range of 28 dBm and 29 dBm respectively.","PeriodicalId":322300,"journal":{"name":"2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMMIC.2017.7927298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper compares the noise performance of the common-source and the cascode topology. Although the cascode topology has several advantages over the common-source stage, the noise performance degrades due to the channel noise and the induced gate noise of the common-gate stage. To underline the theory two multi-decade GaN feedback power amplifiers were designed in common-source and cascode topology, using a submicron AlGaN/GaN MMIC technology on SiC substrate. Both designs achieve 13 dB gain and simultaneously good input and output matching. The 3 dB cutoff frequency of the common-source design is 12 GHz and the cascode feedback amplifier achieves even 17 GHz. At mid-band the common-source and the cascode design achieve a moderate noise figure of 3 dB and 4 dB while maintaining an output power over the complete frequency range of 28 dBm and 29 dBm respectively.