Mahdi Houchati, F. Alabtah, AbdMonem Beitelmal, M. Khraisheh
{"title":"Towards Sustainable Manufacturing Facilities: Utilization of Solar Energy for Efficient Scheduling of Manufacturing Processes","authors":"Mahdi Houchati, F. Alabtah, AbdMonem Beitelmal, M. Khraisheh","doi":"10.1115/1.4063212","DOIUrl":null,"url":null,"abstract":"\n The utilization of solar energy as a source of renewable energy has been a subject of interest for researchers in recent years. Despite recent advances in promoting solar energy, its intermittent and unpredictable nature limits its widespread utilization in manufacturing facilities. This research paper focuses on the utilization of solar energy for efficient scheduling of manufacturing processes and minimizing building HVAC energy requirements while mainteaining thermal comfort conditions for the workers. The work proposes an energy-aware dynamic scheduling procedure to minimize production and building costs by optimizing the utilization of an onsite Photovoltaic (PV) system energy generation. The proposed method takes into account various factors such as the availability of solar energy, energy consumption of different manufacturing processes, and thermal requirements of the building. A stochastic energy prediction algorithm is developed to forecast the hourly one-day-ahead solar resources, based on year-long solar radiation observations collected from an outdoor solar test facility in Qatar. This study shows that using the forecasted PV output improves the overall efficiency of manufacturing processes and building HVAC energy requirements, thus achieving up to a 20% reduction in energy costs. These findings help the development of sustainable manufacturing systems and decrease the negative environmental impacts from industries.","PeriodicalId":326594,"journal":{"name":"ASME Journal of Engineering for Sustainable Buildings and Cities","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Engineering for Sustainable Buildings and Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of solar energy as a source of renewable energy has been a subject of interest for researchers in recent years. Despite recent advances in promoting solar energy, its intermittent and unpredictable nature limits its widespread utilization in manufacturing facilities. This research paper focuses on the utilization of solar energy for efficient scheduling of manufacturing processes and minimizing building HVAC energy requirements while mainteaining thermal comfort conditions for the workers. The work proposes an energy-aware dynamic scheduling procedure to minimize production and building costs by optimizing the utilization of an onsite Photovoltaic (PV) system energy generation. The proposed method takes into account various factors such as the availability of solar energy, energy consumption of different manufacturing processes, and thermal requirements of the building. A stochastic energy prediction algorithm is developed to forecast the hourly one-day-ahead solar resources, based on year-long solar radiation observations collected from an outdoor solar test facility in Qatar. This study shows that using the forecasted PV output improves the overall efficiency of manufacturing processes and building HVAC energy requirements, thus achieving up to a 20% reduction in energy costs. These findings help the development of sustainable manufacturing systems and decrease the negative environmental impacts from industries.