Guillaume Vailland, F. Grzeskowiak, Louise Devigne, Yoren Gaffary, B. Fraudet, E. Leblong, Florian Nouviale, François Pasteau, R. L. Breton, S. Guégan, V. Gouranton, B. Arnaldi, Marie Babel
{"title":"User-centered design of a multisensory power wheelchair simulator: towards training and rehabilitation applications","authors":"Guillaume Vailland, F. Grzeskowiak, Louise Devigne, Yoren Gaffary, B. Fraudet, E. Leblong, Florian Nouviale, François Pasteau, R. L. Breton, S. Guégan, V. Gouranton, B. Arnaldi, Marie Babel","doi":"10.1109/ICORR.2019.8779496","DOIUrl":null,"url":null,"abstract":"Autonomy and social inclusion can reveal themselves everyday challenges for people experiencing mobility impairments. These people can benefit from technical aids such as power wheelchairs to access mobility and overcome social exclusion. However, power wheelchair driving is a challenging task which requires good visual, cognitive and visuo-spatial abilities. Besides, a power wheelchair can cause material damage or represent a danger of injury for others or oneself if not operated safely. Therefore, training and repeated practice are mandatory to acquire safe driving skills to obtain power wheelchair prescription from therapists. However, conventional training programs may reveal themselves insufficient for some people with severe impairments. In this context, Virtual Reality offers the opportunity to design innovative learning and training programs while providing realistic wheelchair driving experience within a virtual environment. In line with this, we propose a user-centered design of a multisensory power wheelchair simulator. This simulator addresses classical virtual experience drawbacks such as cybersickness and sense of presence by combining 3D visual rendering, haptic feedback and motion cues. It relies on a modular and versatile workflow enabling not only easy interfacing with any virtual display, but also with any user interface such as wheelchair controllers or feedback devices. This paper presents the design of the first implementation as well as its first commissioning through pretests. The first setup achieves consistent and realistic behavior.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Autonomy and social inclusion can reveal themselves everyday challenges for people experiencing mobility impairments. These people can benefit from technical aids such as power wheelchairs to access mobility and overcome social exclusion. However, power wheelchair driving is a challenging task which requires good visual, cognitive and visuo-spatial abilities. Besides, a power wheelchair can cause material damage or represent a danger of injury for others or oneself if not operated safely. Therefore, training and repeated practice are mandatory to acquire safe driving skills to obtain power wheelchair prescription from therapists. However, conventional training programs may reveal themselves insufficient for some people with severe impairments. In this context, Virtual Reality offers the opportunity to design innovative learning and training programs while providing realistic wheelchair driving experience within a virtual environment. In line with this, we propose a user-centered design of a multisensory power wheelchair simulator. This simulator addresses classical virtual experience drawbacks such as cybersickness and sense of presence by combining 3D visual rendering, haptic feedback and motion cues. It relies on a modular and versatile workflow enabling not only easy interfacing with any virtual display, but also with any user interface such as wheelchair controllers or feedback devices. This paper presents the design of the first implementation as well as its first commissioning through pretests. The first setup achieves consistent and realistic behavior.