{"title":"Deterministic influence maximization approach for sequential active marketing","authors":"Dmitri Goldenberg, Eyal Tzvi Tenzer","doi":"10.1145/3487351.3489474","DOIUrl":null,"url":null,"abstract":"The influence maximization problem aims to find the best seeding set of nodes in a network to increase the influence spread, under various information diffusion models. Recent advances have shown the importance of the timing of the seeding and introduced the sequential seeding approach, determining a step-by-step cascade of activations. Our study explores a novel Deterministic Influence Maximization Approach (DIMA) for time-based sequential seeding dynamics in a threshold-based model. We examine the problem characteristics and formulate solutions optimizing a scheduled sequential seeding strategy. Based on a set of empirical simulations we demonstrate the properties of the deterministic sequential problem, incorporate three different mathematical programming formulations and provide an initial benchmark for optimization techniques.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3489474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The influence maximization problem aims to find the best seeding set of nodes in a network to increase the influence spread, under various information diffusion models. Recent advances have shown the importance of the timing of the seeding and introduced the sequential seeding approach, determining a step-by-step cascade of activations. Our study explores a novel Deterministic Influence Maximization Approach (DIMA) for time-based sequential seeding dynamics in a threshold-based model. We examine the problem characteristics and formulate solutions optimizing a scheduled sequential seeding strategy. Based on a set of empirical simulations we demonstrate the properties of the deterministic sequential problem, incorporate three different mathematical programming formulations and provide an initial benchmark for optimization techniques.