Deterministic influence maximization approach for sequential active marketing

Dmitri Goldenberg, Eyal Tzvi Tenzer
{"title":"Deterministic influence maximization approach for sequential active marketing","authors":"Dmitri Goldenberg, Eyal Tzvi Tenzer","doi":"10.1145/3487351.3489474","DOIUrl":null,"url":null,"abstract":"The influence maximization problem aims to find the best seeding set of nodes in a network to increase the influence spread, under various information diffusion models. Recent advances have shown the importance of the timing of the seeding and introduced the sequential seeding approach, determining a step-by-step cascade of activations. Our study explores a novel Deterministic Influence Maximization Approach (DIMA) for time-based sequential seeding dynamics in a threshold-based model. We examine the problem characteristics and formulate solutions optimizing a scheduled sequential seeding strategy. Based on a set of empirical simulations we demonstrate the properties of the deterministic sequential problem, incorporate three different mathematical programming formulations and provide an initial benchmark for optimization techniques.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3489474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The influence maximization problem aims to find the best seeding set of nodes in a network to increase the influence spread, under various information diffusion models. Recent advances have shown the importance of the timing of the seeding and introduced the sequential seeding approach, determining a step-by-step cascade of activations. Our study explores a novel Deterministic Influence Maximization Approach (DIMA) for time-based sequential seeding dynamics in a threshold-based model. We examine the problem characteristics and formulate solutions optimizing a scheduled sequential seeding strategy. Based on a set of empirical simulations we demonstrate the properties of the deterministic sequential problem, incorporate three different mathematical programming formulations and provide an initial benchmark for optimization techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序贯积极营销的确定性影响最大化方法
影响最大化问题的目的是在各种信息扩散模型下,寻找网络中最佳的节点播种集,以增加影响的传播。最近的进展表明了播种时间的重要性,并引入了顺序播种方法,确定了一步一步的级联激活。我们的研究探索了一种新的确定性影响最大化方法(DIMA),用于基于阈值的基于时间的序列播种动力学模型。我们研究了问题的特征,并制定了优化调度顺序播种策略的解决方案。基于一组经验模拟,我们展示了确定性序列问题的性质,结合了三种不同的数学规划公式,并为优化技术提供了一个初始基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1