Performing Vector Quantization Using Reduced Data Representation

Erickson Miranda, Guoqiang Shan, V. Megalooikonomou
{"title":"Performing Vector Quantization Using Reduced Data Representation","authors":"Erickson Miranda, Guoqiang Shan, V. Megalooikonomou","doi":"10.1109/DCC.2009.74","DOIUrl":null,"url":null,"abstract":"We propose a method to improve the performance of vector quantization by using different resolutions of the dataset for each GLA iteration. We discuss the use of wavelet decomposition, principal components analysis and other data and dimensionality reduction techniques on the dataset at different stages of vector quantization. Experimental results on both real and simulated datasets show that the proposed technique outperforms ordinary vector quantization in terms of mean squared error or running time.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method to improve the performance of vector quantization by using different resolutions of the dataset for each GLA iteration. We discuss the use of wavelet decomposition, principal components analysis and other data and dimensionality reduction techniques on the dataset at different stages of vector quantization. Experimental results on both real and simulated datasets show that the proposed technique outperforms ordinary vector quantization in terms of mean squared error or running time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用简化的数据表示执行矢量量化
我们提出了一种提高矢量量化性能的方法,即在每次GLA迭代中使用不同的数据集分辨率。我们讨论了在矢量量化的不同阶段对数据集使用小波分解、主成分分析和其他数据降维技术。在真实和模拟数据集上的实验结果表明,该方法在均方误差和运行时间方面优于普通矢量量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1