{"title":"MGX: near-zero overhead memory protection for data-intensive accelerators","authors":"Weizhe Hua, M. Umar, Zhiru Zhang, G. Suh","doi":"10.1145/3470496.3527418","DOIUrl":null,"url":null,"abstract":"This paper introduces MGX, a near-zero overhead memory protection scheme for hardware accelerators. MGX minimizes the performance overhead of off-chip memory encryption and integrity verification by exploiting the application-specific properties of the accelerator execution. In particular, accelerators tend to explicitly manage data movement between on-chip and off-chip memories. Therefore, the general memory access pattern of an accelerator can largely be determined for a given application. Exploiting these characteristics, MGX generates version numbers used in memory encryption and integrity verification using on-chip accelerator state rather than storing them in the off-chip memory; it also customizes the granularity of the memory protection to match the granularity used by the accelerator. To demonstrate the efficacy of MGX, we present an in-depth study of MGX for DNN and graph algorithms. Experimental results show that on average, MGX lowers the performance overhead of memory protection from 28% and 33% to 4% and 5% for DNN and graph processing accelerators in a wide range of benchmarks, respectively.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper introduces MGX, a near-zero overhead memory protection scheme for hardware accelerators. MGX minimizes the performance overhead of off-chip memory encryption and integrity verification by exploiting the application-specific properties of the accelerator execution. In particular, accelerators tend to explicitly manage data movement between on-chip and off-chip memories. Therefore, the general memory access pattern of an accelerator can largely be determined for a given application. Exploiting these characteristics, MGX generates version numbers used in memory encryption and integrity verification using on-chip accelerator state rather than storing them in the off-chip memory; it also customizes the granularity of the memory protection to match the granularity used by the accelerator. To demonstrate the efficacy of MGX, we present an in-depth study of MGX for DNN and graph algorithms. Experimental results show that on average, MGX lowers the performance overhead of memory protection from 28% and 33% to 4% and 5% for DNN and graph processing accelerators in a wide range of benchmarks, respectively.