A Simple Method to Boost Human Pose Estimation Accuracy by Correcting the Joint Regressor for the Human3.6m Dataset

Eric Hedlin, Helge Rhodin, K. M. Yi
{"title":"A Simple Method to Boost Human Pose Estimation Accuracy by Correcting the Joint Regressor for the Human3.6m Dataset","authors":"Eric Hedlin, Helge Rhodin, K. M. Yi","doi":"10.1109/CRV55824.2022.00009","DOIUrl":null,"url":null,"abstract":"Many human pose estimation methods estimate Skinned Multi-Person Linear (SMPL) models and regress the human joints from these SMPL estimates. In this work, we show that the most widely used SMPL-to-joint linear layer (joint regressor) is inaccurate, which may mislead pose evaluation results. To achieve a more accurate joint regressor, we propose a method to create pseudo-ground-truth SMPL poses, which can then be used to train an improved regressor. Specifically, we optimize SMPL estimates coming from a state-of-the-art method so that its projection matches the silhouettes of humans in the scene, as well as the ground-truth 2D joint locations. While the quality of this pseudo-ground-truth is chal-lenging to assess due to the lack of actual ground-truth SMPL, with the Human 3.6m dataset, we qualitatively show that our joint locations are more accurate and that our regressor leads to improved pose estimations results on the test set without any need for retraining. We release our code and joint regressor at https://github.com/ubc-vision/joint-regressor-refinement","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many human pose estimation methods estimate Skinned Multi-Person Linear (SMPL) models and regress the human joints from these SMPL estimates. In this work, we show that the most widely used SMPL-to-joint linear layer (joint regressor) is inaccurate, which may mislead pose evaluation results. To achieve a more accurate joint regressor, we propose a method to create pseudo-ground-truth SMPL poses, which can then be used to train an improved regressor. Specifically, we optimize SMPL estimates coming from a state-of-the-art method so that its projection matches the silhouettes of humans in the scene, as well as the ground-truth 2D joint locations. While the quality of this pseudo-ground-truth is chal-lenging to assess due to the lack of actual ground-truth SMPL, with the Human 3.6m dataset, we qualitatively show that our joint locations are more accurate and that our regressor leads to improved pose estimations results on the test set without any need for retraining. We release our code and joint regressor at https://github.com/ubc-vision/joint-regressor-refinement
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Human3.6m数据集的联合回归校正提高人体姿态估计精度的简单方法
许多人体姿态估计方法估计蒙皮多人线性(SMPL)模型,并从这些SMPL估计中回归人体关节。在这项工作中,我们发现最广泛使用的smpl -关节线性层(关节回归器)是不准确的,这可能会误导姿态评估结果。为了获得更准确的联合回归量,我们提出了一种方法来创建伪地真SMPL姿势,然后可以用来训练改进的回归量。具体来说,我们优化了来自最先进方法的SMPL估计,使其投影与场景中人类的轮廓以及地面真实的2D关节位置相匹配。虽然由于缺乏实际的地面真值SMPL,这种伪地面真值的质量很难评估,但使用Human 360万数据集,我们定性地表明,我们的联合位置更准确,我们的回归器在不需要再训练的情况下改善了测试集上的姿态估计结果。我们在https://github.com/ubc-vision/joint-regressor-refinement上发布了代码和联合回归器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A View Invariant Human Action Recognition System for Noisy Inputs TemporalNet: Real-time 2D-3D Video Object Detection Occluded Text Detection and Recognition in the Wild Anomaly Detection with Adversarially Learned Perturbations of Latent Space Occlusion-Aware Self-Supervised Stereo Matching with Confidence Guided Raw Disparity Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1