{"title":"A Simple Method to Boost Human Pose Estimation Accuracy by Correcting the Joint Regressor for the Human3.6m Dataset","authors":"Eric Hedlin, Helge Rhodin, K. M. Yi","doi":"10.1109/CRV55824.2022.00009","DOIUrl":null,"url":null,"abstract":"Many human pose estimation methods estimate Skinned Multi-Person Linear (SMPL) models and regress the human joints from these SMPL estimates. In this work, we show that the most widely used SMPL-to-joint linear layer (joint regressor) is inaccurate, which may mislead pose evaluation results. To achieve a more accurate joint regressor, we propose a method to create pseudo-ground-truth SMPL poses, which can then be used to train an improved regressor. Specifically, we optimize SMPL estimates coming from a state-of-the-art method so that its projection matches the silhouettes of humans in the scene, as well as the ground-truth 2D joint locations. While the quality of this pseudo-ground-truth is chal-lenging to assess due to the lack of actual ground-truth SMPL, with the Human 3.6m dataset, we qualitatively show that our joint locations are more accurate and that our regressor leads to improved pose estimations results on the test set without any need for retraining. We release our code and joint regressor at https://github.com/ubc-vision/joint-regressor-refinement","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Many human pose estimation methods estimate Skinned Multi-Person Linear (SMPL) models and regress the human joints from these SMPL estimates. In this work, we show that the most widely used SMPL-to-joint linear layer (joint regressor) is inaccurate, which may mislead pose evaluation results. To achieve a more accurate joint regressor, we propose a method to create pseudo-ground-truth SMPL poses, which can then be used to train an improved regressor. Specifically, we optimize SMPL estimates coming from a state-of-the-art method so that its projection matches the silhouettes of humans in the scene, as well as the ground-truth 2D joint locations. While the quality of this pseudo-ground-truth is chal-lenging to assess due to the lack of actual ground-truth SMPL, with the Human 3.6m dataset, we qualitatively show that our joint locations are more accurate and that our regressor leads to improved pose estimations results on the test set without any need for retraining. We release our code and joint regressor at https://github.com/ubc-vision/joint-regressor-refinement