Load parameter identification based on particle swarm optimization and the comparison to ant colony optimization

Li Haoguang, Yu Yunhua, Shen Xuefeng
{"title":"Load parameter identification based on particle swarm optimization and the comparison to ant colony optimization","authors":"Li Haoguang, Yu Yunhua, Shen Xuefeng","doi":"10.1109/ICIEA.2016.7603644","DOIUrl":null,"url":null,"abstract":"It has been recognized that the proper parameters for the load model is significant to represent a load accurately. On the basis of introducing the Particle Swarm Optimization (PSO) and the Ant Colony Optimization (ACO), a parameter identification method of load model using PSO and ACO respectively were proposed and employed in the specific case study in this paper. It is shown by the case that the power curves simulated are closer to the measured ones and the relative error is smaller by using PSO than ACO. Which leads to the conclusion that PSO algorithm is more efficient and accurate than ACO algorithm in load parameter identification, that is, PSO algorithm has a certain superiority in the aspect of load model parameter identification.","PeriodicalId":283114,"journal":{"name":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2016.7603644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It has been recognized that the proper parameters for the load model is significant to represent a load accurately. On the basis of introducing the Particle Swarm Optimization (PSO) and the Ant Colony Optimization (ACO), a parameter identification method of load model using PSO and ACO respectively were proposed and employed in the specific case study in this paper. It is shown by the case that the power curves simulated are closer to the measured ones and the relative error is smaller by using PSO than ACO. Which leads to the conclusion that PSO algorithm is more efficient and accurate than ACO algorithm in load parameter identification, that is, PSO algorithm has a certain superiority in the aspect of load model parameter identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法的负荷参数辨识及其与蚁群算法的比较
人们已经认识到,适当的负荷模型参数对于准确地表示负荷是非常重要的。在介绍粒子群算法(PSO)和蚁群算法(ACO)的基础上,分别提出了一种基于粒子群算法(PSO)和蚁群算法(蚁群算法)的负荷模型参数辨识方法,并将其应用于具体案例研究。算例表明,与蚁群算法相比,粒子群算法模拟的功率曲线更接近实测值,相对误差更小。由此得出PSO算法在负荷参数识别方面比蚁群算法更高效、更准确,即PSO算法在负荷模型参数识别方面具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The electric power source structure optimization based on capital investment efficiency Modeling, control and implementation of high step-up ratio IDDB converters for fuel cell applications Research of heat transfer characteristic for PMSM with two-way ventilation structure Experimental researches on the novel single-phase induction motor Adaptive similarity fusion strategy in stereo matching algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1