Establishing Self-Healing and Seamless Connectivity among IoT Networks Using Kalman Filter

N. Srinidhi, J. Shreyas, E. Naresh
{"title":"Establishing Self-Healing and Seamless Connectivity among IoT Networks Using Kalman Filter","authors":"N. Srinidhi, J. Shreyas, E. Naresh","doi":"10.18196/jrc.v3i5.11622","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) is the extension of Internet connectivity into physical devices and to everyday objects. Efficient mobility support in IoT provides seamless connectivity to mobile nodes having restrained resources in terms of energy, memory and link capacity. Existing routing algorithms have less reactivity to mobility. So, in this work, a new proactive mobility support algorithm based on the Kalman Filter has been proposed. Mobile nodes are provided with a seamless connectivity by minimizing the switching numbers between point of attachment which helps in reducing signaling overhead and power consumption. The handoff trigger scheme which makes use of mobility information in order to predict handoff event occurrence is used.  Mobile nodes new attachment points and its trajectory is predicted using the Kalman-Filter. Kalman-Filter is a predictor-estimator method used for movement prediction is used in this approach. Kalman Filtering is carried out in two steps: i) Predicting and ii) Updating. Each step is investigated and coded as a function with matrix input and output. Self-healing characteristics is being considered in the proposed algorithm to prevent the network from failing and to help in efficient routing of data. Proposed approach achieves high efficiency in terms of movement prediction, energy efficiency, handoff delay and fault tolerance when compared to existing approach.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v3i5.11622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) is the extension of Internet connectivity into physical devices and to everyday objects. Efficient mobility support in IoT provides seamless connectivity to mobile nodes having restrained resources in terms of energy, memory and link capacity. Existing routing algorithms have less reactivity to mobility. So, in this work, a new proactive mobility support algorithm based on the Kalman Filter has been proposed. Mobile nodes are provided with a seamless connectivity by minimizing the switching numbers between point of attachment which helps in reducing signaling overhead and power consumption. The handoff trigger scheme which makes use of mobility information in order to predict handoff event occurrence is used.  Mobile nodes new attachment points and its trajectory is predicted using the Kalman-Filter. Kalman-Filter is a predictor-estimator method used for movement prediction is used in this approach. Kalman Filtering is carried out in two steps: i) Predicting and ii) Updating. Each step is investigated and coded as a function with matrix input and output. Self-healing characteristics is being considered in the proposed algorithm to prevent the network from failing and to help in efficient routing of data. Proposed approach achieves high efficiency in terms of movement prediction, energy efficiency, handoff delay and fault tolerance when compared to existing approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用卡尔曼滤波建立物联网网络之间的自愈和无缝连接
物联网(IoT)是将互联网连接扩展到物理设备和日常物品。物联网中的高效移动性支持为在能源、内存和链路容量方面资源有限的移动节点提供无缝连接。现有的路由算法对机动性的响应性较差。为此,本文提出了一种基于卡尔曼滤波的主动移动支持算法。移动节点通过最小化连接点之间的切换数量来提供无缝连接,这有助于减少信令开销和功耗。采用了利用移动性信息预测切换事件发生的切换触发方案。利用卡尔曼滤波器预测移动节点的新附着点及其轨迹。卡尔曼滤波是一种用于运动预测的预测估计方法。卡尔曼滤波分两步进行:i)预测和ii)更新。每个步骤都被研究并编码为具有矩阵输入和输出的函数。该算法考虑了自愈特性,以防止网络故障,并有助于有效地路由数据。与现有方法相比,该方法在运动预测、能量效率、切换延迟和容错性等方面具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
期刊最新文献
Efficient Path Planning Algorithm for Mobile Robots Performing Floor Cleaning Like Operations Adaptive Cruise Control of the Autonomous Vehicle Based on Sliding Mode Controller Using Arduino and Ultrasonic Sensor Development of Microclimate Data Recorder on Coffee-Pine Agroforestry Using LoRaWAN and IoT Technology Using Learning Focal Point Algorithm to Classify Emotional Intelligence Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1