Multi-profile ultra high definition (UHD) AVC and HEVC 4K DASH datasets

Jason J. Quinlan, C. Sreenan
{"title":"Multi-profile ultra high definition (UHD) AVC and HEVC 4K DASH datasets","authors":"Jason J. Quinlan, C. Sreenan","doi":"10.1145/3204949.3208130","DOIUrl":null,"url":null,"abstract":"In this paper we present a Multi-Profile Ultra High Definition (UHD) DASH dataset composed of both AVC (H.264) and HEVC (H.265) video content, generated from three well known open-source 4K video clips. The representation rates and resolutions of our dataset range from 40Mbps in 4K down to 235kbps in 320x240, and are comparable to rates utilised by on demand services such as Netflix, Youtube and Amazon Prime. We provide our dataset for both realtime testbed evaluation and trace-based simulation. The real-time testbed content provides a means of evaluating DASH adaptation techniques on physical hardware, while our trace-based content offers simulation over frameworks such as ns-2 and ns-3. We also provide the original pre-DASH MP4 files and our associated DASH generation scripts, so as to provide researchers with a mechanism to create their own DASH profile content locally. Which improves the reproducibility of results and remove re-buffering issues caused by delay/jitter/losses in the Internet. The primary goal of our dataset is to provide the wide range of video content required for validating DASH Quality of Experience (QoE) delivery over networks, ranging from constrained cellular and satellite systems to future high speed architectures such as the proposed 5G mmwave technology.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3208130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In this paper we present a Multi-Profile Ultra High Definition (UHD) DASH dataset composed of both AVC (H.264) and HEVC (H.265) video content, generated from three well known open-source 4K video clips. The representation rates and resolutions of our dataset range from 40Mbps in 4K down to 235kbps in 320x240, and are comparable to rates utilised by on demand services such as Netflix, Youtube and Amazon Prime. We provide our dataset for both realtime testbed evaluation and trace-based simulation. The real-time testbed content provides a means of evaluating DASH adaptation techniques on physical hardware, while our trace-based content offers simulation over frameworks such as ns-2 and ns-3. We also provide the original pre-DASH MP4 files and our associated DASH generation scripts, so as to provide researchers with a mechanism to create their own DASH profile content locally. Which improves the reproducibility of results and remove re-buffering issues caused by delay/jitter/losses in the Internet. The primary goal of our dataset is to provide the wide range of video content required for validating DASH Quality of Experience (QoE) delivery over networks, ranging from constrained cellular and satellite systems to future high speed architectures such as the proposed 5G mmwave technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多轮廓超高清(UHD) AVC和HEVC 4K DASH数据集
在本文中,我们提出了一个由AVC (H.264)和HEVC (H.265)视频内容组成的多轮廓超高清(UHD) DASH数据集,该数据集由三个众所周知的开源4K视频片段生成。我们数据集的表示率和分辨率范围从4K的40Mbps到320x240的235kbps,并且与Netflix, Youtube和Amazon Prime等点播服务使用的速率相当。我们为实时测试平台评估和基于跟踪的模拟提供了我们的数据集。实时测试平台内容提供了一种评估物理硬件上DASH适应技术的方法,而我们基于跟踪的内容提供了在ns-2和ns-3等框架上的模拟。我们还提供了原始的pre-DASH MP4文件和相关的DASH生成脚本,为研究人员提供了一种本地创建自己的DASH配置文件内容的机制。这提高了结果的再现性,并消除了由互联网上的延迟/抖动/损失引起的重新缓冲问题。我们数据集的主要目标是提供验证网络上DASH体验质量(QoE)交付所需的广泛视频内容,范围从受限的蜂窝和卫星系统到未来的高速架构,如拟议的5G毫米波技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1