HINet: Hierarchical Point Cloud Frame Interpolation Network

Jiawen Xu, Zhiyuan You, Xinyi Le, Cailian Chen, X. Guan
{"title":"HINet: Hierarchical Point Cloud Frame Interpolation Network","authors":"Jiawen Xu, Zhiyuan You, Xinyi Le, Cailian Chen, X. Guan","doi":"10.1109/ICICIP53388.2021.9642217","DOIUrl":null,"url":null,"abstract":"Intelligent agents utilize various sensors such as LiDAR, cameras to perceive the surroundings. However, the frame rate difference among sensors seriously affects both safety and efficiency of intelligent agents. Recently some research concerning point cloud frame interpolation is conducted to solve the frame rate inconsistency problem by interpolating low frame rate point cloud sequences up to high frame rate ones. To improve the performance of current state-of-the-art method, we come up with a novel Hierarchical Point Cloud Frame Interpolation Network (HINet). By proposed hierarchical warping module, coarse intermediate frames are generated hierarchically to reach closer toward the target position. Besides, we propose spatial aware fusion strategy to hierarchically restore local geometric distribution by attention mechanism and positional offset. Finally, hierarchical supervision module is applied to efficiently train the HINet in two stages, guaranteeing the quality of predicted intermediate frames. We employ HINet in a large outdoor autonomous driving dataset and provide convincing qualitative and quantitative evaluation results.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intelligent agents utilize various sensors such as LiDAR, cameras to perceive the surroundings. However, the frame rate difference among sensors seriously affects both safety and efficiency of intelligent agents. Recently some research concerning point cloud frame interpolation is conducted to solve the frame rate inconsistency problem by interpolating low frame rate point cloud sequences up to high frame rate ones. To improve the performance of current state-of-the-art method, we come up with a novel Hierarchical Point Cloud Frame Interpolation Network (HINet). By proposed hierarchical warping module, coarse intermediate frames are generated hierarchically to reach closer toward the target position. Besides, we propose spatial aware fusion strategy to hierarchically restore local geometric distribution by attention mechanism and positional offset. Finally, hierarchical supervision module is applied to efficiently train the HINet in two stages, guaranteeing the quality of predicted intermediate frames. We employ HINet in a large outdoor autonomous driving dataset and provide convincing qualitative and quantitative evaluation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HINet:分层点云帧插值网络
智能代理利用各种传感器,如激光雷达、摄像头来感知周围环境。然而,传感器之间的帧率差异严重影响了智能体的安全性和效率。为了解决低帧率点云序列与高帧率点云序列之间的帧率不一致问题,近年来进行了点云帧插值研究。为了提高当前最先进的方法的性能,我们提出了一种新的分层点云帧插值网络(HINet)。通过提出的分层扭曲模块,分层生成粗中间帧,使其更接近目标位置。此外,我们还提出了空间意识融合策略,通过注意机制和位置偏移来分层恢复局部几何分布。最后,采用分层监督模块,分两阶段高效训练HINet,保证预测中间帧的质量。我们将HINet应用于大型户外自动驾驶数据集,并提供了令人信服的定性和定量评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1