Sai Manoj Pudukotai Dinakarrao, Kanwen Wang, Hantao Huang, Hao Yu
{"title":"Smart I/Os: a data-pattern aware 2.5D interconnect with space-time multiplexing","authors":"Sai Manoj Pudukotai Dinakarrao, Kanwen Wang, Hantao Huang, Hao Yu","doi":"10.1109/SLIP.2015.7171707","DOIUrl":null,"url":null,"abstract":"A data-pattern aware smart I/O is introduced in this paper for 2.5D through-silicon interposer (TSI) interconnect based memory-logic integration. To match huge many-core bandwidth demand with limited supply of 2.5D I/O channels when accessing one shared memory, a space-time multiplexing based channel utilisation is developed inside the memory controller to reuse 2.5D I/O channels. Many cores are adaptively classified into clusters based on the bandwidth demand by space multiplexing to access the shared memory. Time multiplexing is then performed to schedule the cores in one cluster to occupy the supplied 2.5D I/O channels at different time-slots upon priority. The proposed smart 2.5D TSI I/O is verified by the system-level simulator with benchmarked workloads, which shows up to 58.85% bandwidth balancing and 11.90% QoS improvement.","PeriodicalId":431489,"journal":{"name":"2015 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLIP.2015.7171707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A data-pattern aware smart I/O is introduced in this paper for 2.5D through-silicon interposer (TSI) interconnect based memory-logic integration. To match huge many-core bandwidth demand with limited supply of 2.5D I/O channels when accessing one shared memory, a space-time multiplexing based channel utilisation is developed inside the memory controller to reuse 2.5D I/O channels. Many cores are adaptively classified into clusters based on the bandwidth demand by space multiplexing to access the shared memory. Time multiplexing is then performed to schedule the cores in one cluster to occupy the supplied 2.5D I/O channels at different time-slots upon priority. The proposed smart 2.5D TSI I/O is verified by the system-level simulator with benchmarked workloads, which shows up to 58.85% bandwidth balancing and 11.90% QoS improvement.