Adaptive Cutting Force Observer for Machine Tool Considering Stage Parameter Variation

K. Ohno, H. Fujimoto, Yoshihiro Isaoka, Yuki Terada
{"title":"Adaptive Cutting Force Observer for Machine Tool Considering Stage Parameter Variation","authors":"K. Ohno, H. Fujimoto, Yoshihiro Isaoka, Yuki Terada","doi":"10.1109/ICM46511.2021.9385598","DOIUrl":null,"url":null,"abstract":"Monitoring cutting force generated during the machining process is crucial to prevent tool breakage and chattering. The cutting force observer, which considers the machine tool as the two-inertia system, has been proposed to estimate cutting forces in wide bandwidth using multiple encoders. However, modeling errors and the parameter variation during machining can deteriorate estimation accuracy in such a model-based observer. Previous studies solved some modeling error issues, but inertia, friction, and other parameters that belong to the moving stage had rarely considered. Therefore, the adaptive cutting force observer is proposed in this paper. The proposal consists of online stage parameter identification and updating algorithm. The effectiveness of the proposed adaptive observer is demonstrated through the experiments using the simplified experimental setup.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Monitoring cutting force generated during the machining process is crucial to prevent tool breakage and chattering. The cutting force observer, which considers the machine tool as the two-inertia system, has been proposed to estimate cutting forces in wide bandwidth using multiple encoders. However, modeling errors and the parameter variation during machining can deteriorate estimation accuracy in such a model-based observer. Previous studies solved some modeling error issues, but inertia, friction, and other parameters that belong to the moving stage had rarely considered. Therefore, the adaptive cutting force observer is proposed in this paper. The proposal consists of online stage parameter identification and updating algorithm. The effectiveness of the proposed adaptive observer is demonstrated through the experiments using the simplified experimental setup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑阶段参数变化的机床自适应切削力观测器
监测加工过程中产生的切削力是防止刀具断裂和颤振的关键。提出了一种考虑机床为双惯量系统的切削力观测器,利用多编码器在宽带宽下估计切削力。然而,在这种基于模型的观测器中,建模误差和加工过程中的参数变化会降低估计精度。以往的研究解决了一些建模误差问题,但很少考虑惯性、摩擦等属于运动阶段的参数。为此,本文提出了自适应切削力观测器。该方案包括在线舞台参数辨识和更新算法。在简化的实验装置上进行了实验,验证了自适应观测器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vision-Based Rapid Target Tracking Method for Trajectories Estimation and Actuator Parameter Uncertainties for Asteroid Flyby Problem Hybrid identification with time-series data and frequency response data for accurate estimation of linear characteristics Study on how to remove the rope traction device on the overhead distribution lines Adaptive Robust Motion Control of Series Elastic Actuator with Unmatched Uncertainties Modeling and Control of Stable Limit Cycle Walking on Floating Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1