Learning Spatio-Temporal Behavioural Representations for Urban Activity Forecasting

F. Salim
{"title":"Learning Spatio-Temporal Behavioural Representations for Urban Activity Forecasting","authors":"F. Salim","doi":"10.1145/3442442.3451892","DOIUrl":null,"url":null,"abstract":"Understanding human activity patterns in cities enables a more efficient and sustainable energy, transport, and resource planning. In this invited talk, after laying out the background on spatio-temporal representation, I will present our unsupervised approaches to handle large-scale mutivariate sensor data from heterogeneous sources, prior to modelling them further with the rich contextual signals obtained from the environment. I will also present several spatio-temporal prediction and recommendation problems, leveraging graph-based enrichment and embedding techniques, with applications in continuous trajectory prediction, visitor intent profiling, and urban flow forecasting.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding human activity patterns in cities enables a more efficient and sustainable energy, transport, and resource planning. In this invited talk, after laying out the background on spatio-temporal representation, I will present our unsupervised approaches to handle large-scale mutivariate sensor data from heterogeneous sources, prior to modelling them further with the rich contextual signals obtained from the environment. I will also present several spatio-temporal prediction and recommendation problems, leveraging graph-based enrichment and embedding techniques, with applications in continuous trajectory prediction, visitor intent profiling, and urban flow forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市活动预测的时空行为表征学习
了解城市中的人类活动模式有助于制定更有效和可持续的能源、交通和资源规划。在这次受邀演讲中,在介绍了时空表示的背景之后,我将介绍我们的无监督方法来处理来自异构源的大规模多变量传感器数据,然后用从环境中获得的丰富上下文信号进一步建模。我还将介绍几个时空预测和推荐问题,利用基于图的丰富和嵌入技术,在连续轨迹预测、游客意图分析和城市流量预测中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do I Trust this Stranger? Generalized Trust and the Governance of Online Communities Explainable Demand Forecasting: A Data Mining Goldmine Tracing the Factoids: the Anatomy of Information Re-organization in Wikipedia Articles AI Principles in Identifying Toxicity in Online Conversation: Keynote at the Third Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web Fairness beyond “equal”: The Diversity Searcher as a Tool to Detect and Enhance the Representation of Socio-political Actors in News Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1