From #jobsearch to #mask: improving COVID-19 cascade prediction with spillover effects

Ninghan Chen, Zhiqiang Zhong, Jun Pang
{"title":"From #jobsearch to #mask: improving COVID-19 cascade prediction with spillover effects","authors":"Ninghan Chen, Zhiqiang Zhong, Jun Pang","doi":"10.1145/3487351.3488555","DOIUrl":null,"url":null,"abstract":"An information outbreak occurs on social media along with the COVID-19 pandemic and leads to infodemic. Predicting the popularity of online content, known as cascade prediction, allows for not only catching in advance hot information that deserves attention, but also identifying false information that will widely spread and require quick response to mitigate its impact. Among the various information diffusion patterns leveraged in previous works, the spillover effect of the information exposed to users on their decision to participate in diffusing certain information is still not studied. In this paper, we focus on the diffusion of information related to COVID-19 preventive measures. Through our collected Twitter dataset, we validated the existence of this spillover effect. Building on the finding, we proposed extensions to three cascade prediction methods based on Graph Neural Networks (GNNs). Experiments conducted on our dataset demonstrated that the use of the identified spillover effect significantly improves the state-of-the-art GNNs methods in predicting the popularity of not only preventive measure messages, but also other COVID-19 related messages.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An information outbreak occurs on social media along with the COVID-19 pandemic and leads to infodemic. Predicting the popularity of online content, known as cascade prediction, allows for not only catching in advance hot information that deserves attention, but also identifying false information that will widely spread and require quick response to mitigate its impact. Among the various information diffusion patterns leveraged in previous works, the spillover effect of the information exposed to users on their decision to participate in diffusing certain information is still not studied. In this paper, we focus on the diffusion of information related to COVID-19 preventive measures. Through our collected Twitter dataset, we validated the existence of this spillover effect. Building on the finding, we proposed extensions to three cascade prediction methods based on Graph Neural Networks (GNNs). Experiments conducted on our dataset demonstrated that the use of the identified spillover effect significantly improves the state-of-the-art GNNs methods in predicting the popularity of not only preventive measure messages, but also other COVID-19 related messages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从#jobsearch到#mask:改进具有溢出效应的COVID-19级联预测
随着新冠肺炎大流行,社交媒体上的信息爆发,导致信息大流行。预测网络内容的受欢迎程度,被称为级联预测,不仅可以提前捕捉到值得关注的热点信息,还可以识别出广泛传播并需要快速反应以减轻其影响的虚假信息。在前人研究的各种信息扩散模式中,暴露给用户的信息对用户参与传播某一信息的决策的溢出效应尚未得到研究。在本文中,我们重点关注与COVID-19预防措施相关的信息传播。通过我们收集的Twitter数据集,我们验证了这种溢出效应的存在。基于这一发现,我们提出了三种基于图神经网络(gnn)的级联预测方法的扩展。在我们的数据集上进行的实验表明,使用已识别的溢出效应显著提高了最先进的gnn方法,不仅可以预测预防措施信息的受欢迎程度,还可以预测其他与COVID-19相关的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1