An electronic nose for quantitative determination of gas concentrations

G. Jasinski, P. Kalinowski, Ł. Woźniak
{"title":"An electronic nose for quantitative determination of gas concentrations","authors":"G. Jasinski, P. Kalinowski, Ł. Woźniak","doi":"10.1117/12.2248494","DOIUrl":null,"url":null,"abstract":"The practical application of human nose for fragrance recognition is severely limited by the fact that our sense of smell is subjective and gets tired easily. Consequently, there is considerable need for an instrument that can be a substitution of the human sense of smell. Electronic nose devices from the mid 1980s are used in growing number of applications. They comprise an array of several electrochemical gas sensors with partial specificity and a pattern recognition algorithms. Most of such systems, however, is only used for qualitative measurements. In this article usage of such system in quantitative determination of gas concentration is demonstrated. Electronic nose consist of a sensor array with eight commercially available Taguchi type gas sensor. Performance of three different pattern recognition algorithms is compared, namely artificial neural network, partial least squares regression and support vector machine regression. The electronic nose is used for ammonia and nitrogen dioxide concentration determination.","PeriodicalId":101814,"journal":{"name":"Scientific Conference on Optical and Electronic Sensors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Conference on Optical and Electronic Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2248494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The practical application of human nose for fragrance recognition is severely limited by the fact that our sense of smell is subjective and gets tired easily. Consequently, there is considerable need for an instrument that can be a substitution of the human sense of smell. Electronic nose devices from the mid 1980s are used in growing number of applications. They comprise an array of several electrochemical gas sensors with partial specificity and a pattern recognition algorithms. Most of such systems, however, is only used for qualitative measurements. In this article usage of such system in quantitative determination of gas concentration is demonstrated. Electronic nose consist of a sensor array with eight commercially available Taguchi type gas sensor. Performance of three different pattern recognition algorithms is compared, namely artificial neural network, partial least squares regression and support vector machine regression. The electronic nose is used for ammonia and nitrogen dioxide concentration determination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于气体浓度定量测定的电子鼻
人类的嗅觉是主观的,很容易疲劳,这严重限制了人类嗅觉识别香味的实际应用。因此,人们非常需要一种可以代替人类嗅觉的仪器。20世纪80年代中期的电子鼻装置在越来越多的应用中得到使用。它们包括一组具有部分特异性的电化学气体传感器和一种模式识别算法。然而,大多数这样的系统只用于定性测量。本文介绍了该系统在气体浓度定量测定中的应用。电子鼻由一个传感器阵列和八个市售田口式气体传感器组成。比较了人工神经网络、偏最小二乘回归和支持向量机回归三种模式识别算法的性能。电子鼻用于测定氨和二氧化氮的浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realization of a fiber optic sensor detecting the presence of a liquid Zirconia-based mixed potential sensor with Pt electrode prepared by spin-coating of polymeric precursor Techniques of acquiring additional features of the responses of individual gas sensors Extraction and evaluation of gas-flow-dependent features from dynamic measurements of gas sensors array Features extraction from the electrocatalytic gas sensor responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1