An adaptive speckle suppression filter based on Nakagami distribution

S. Ghofrani, M. Jahed-Motlagh, A. Ayatollahi
{"title":"An adaptive speckle suppression filter based on Nakagami distribution","authors":"S. Ghofrani, M. Jahed-Motlagh, A. Ayatollahi","doi":"10.1109/EURCON.2001.937769","DOIUrl":null,"url":null,"abstract":"Using a good statistical model of speckle formation is important in designing an adaptive filter for speckle reduction in ultrasound B-scan images. Most clinical ultrasound imaging systems use a nonlinear logarithmic function to reduce the dynamic range of the the input echo signal and emphasize objects with weak backscatter. Previously, the statistic of log-compressed images had been derived for Rayleigh and K distributions. In this paper, the statistics of log-compressed echo images is derived for a Nakagami distribution, more general than Rayleigh and with lower computational cost than K distribution, and used the extracted result for designing an unsharp masking filter to reduce speckle. To demonstrate the efficiency of the designed adaptive filter for removing speckle, we processed two original ultrasound images of kidney and liver.","PeriodicalId":205662,"journal":{"name":"EUROCON'2001. International Conference on Trends in Communications. Technical Program, Proceedings (Cat. No.01EX439)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUROCON'2001. International Conference on Trends in Communications. Technical Program, Proceedings (Cat. No.01EX439)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURCON.2001.937769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Using a good statistical model of speckle formation is important in designing an adaptive filter for speckle reduction in ultrasound B-scan images. Most clinical ultrasound imaging systems use a nonlinear logarithmic function to reduce the dynamic range of the the input echo signal and emphasize objects with weak backscatter. Previously, the statistic of log-compressed images had been derived for Rayleigh and K distributions. In this paper, the statistics of log-compressed echo images is derived for a Nakagami distribution, more general than Rayleigh and with lower computational cost than K distribution, and used the extracted result for designing an unsharp masking filter to reduce speckle. To demonstrate the efficiency of the designed adaptive filter for removing speckle, we processed two original ultrasound images of kidney and liver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Nakagami分布的自适应散斑抑制滤波器
利用良好的散斑形成统计模型对设计一种自适应滤波器来降低b超扫描图像中的散斑是非常重要的。大多数临床超声成像系统使用非线性对数函数来减小输入回波信号的动态范围,并强调弱反向散射的物体。以前,对数压缩图像的统计量是针对Rayleigh分布和K分布导出的。本文推导了比Rayleigh分布更通用、比K分布计算成本更低的Nakagami分布的对数压缩回波图像统计量,并利用提取结果设计了一种不锐利的掩蔽滤波器来减少散斑。为了验证所设计的自适应滤波器去除斑点的效率,我们对肾脏和肝脏的两张原始超声图像进行了处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network element manager of the SI2000 V5 product line, and the interoperability with the network, service and business level Performance analysis of burst level bandwidth allocation using multipath routing reservation Flexibility of JavaScript controled simulations Influence of parameter initialization on the performance of nonlinear blind equalizers for satellite communications A strategy for voice browsing in 3G wireless networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1