Binarization and Segmentation of Kannada Handwritten Document Images

Vinod H.C, S. Niranjan
{"title":"Binarization and Segmentation of Kannada Handwritten Document Images","authors":"Vinod H.C, S. Niranjan","doi":"10.1109/ICGCIOT.2018.8753039","DOIUrl":null,"url":null,"abstract":"Binarization of document images is a major phase in the handwritten text recognition process. Text recognition process gives best result and easy to archive recognition for printed documents, but more accurate and fast Binarization & segmentation methods are required to achieve high accuracy in handwritten character recognition. In this paper we presenting two modules, they are Document Binarization & Segmentation. In Document Binarization carried out using Haar wavelet decomposition, laplacian mask, maximum gradient difference, median filter and morphological operators. Segmentation is done by the projection profile method and paragraph skew correction recursively until height of the segmented line image is less than 7% of the input image, Connected Component Analysis is used to segment words. These segmented words can be feed to OCR for recognition; the proposed experimental results are encouraging.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Binarization of document images is a major phase in the handwritten text recognition process. Text recognition process gives best result and easy to archive recognition for printed documents, but more accurate and fast Binarization & segmentation methods are required to achieve high accuracy in handwritten character recognition. In this paper we presenting two modules, they are Document Binarization & Segmentation. In Document Binarization carried out using Haar wavelet decomposition, laplacian mask, maximum gradient difference, median filter and morphological operators. Segmentation is done by the projection profile method and paragraph skew correction recursively until height of the segmented line image is less than 7% of the input image, Connected Component Analysis is used to segment words. These segmented words can be feed to OCR for recognition; the proposed experimental results are encouraging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡纳达语手写文档图像的二值化与分割
文档图像的二值化是手写文本识别过程中的一个重要阶段。文本识别方法对打印文档的识别效果最好,易于归档,但手写字符识别需要更准确、快速的二值化和分割方法。本文介绍了文档二值化和分割两个模块。在文档二值化中使用Haar小波分解、拉普拉斯掩模、最大梯度差、中值滤波和形态算子进行。通过投影轮廓法和段斜递归校正进行分割,直到分割的直线图像高度小于输入图像的7%,使用连通分量分析法进行词分割。这些被分割的词可以被输入到OCR进行识别;提出的实验结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Holistic Approach For Patient Health Care Monitoring System Through IoT Pomegranate Diseases and Detection using Sensors: A Review Energy Efficient Optimal Path based coded transmission for multi-sink and multi-hop WSN Iot Based Smart Shopping Mall Visual screens in Canteens providing Real Time information of Food Wastage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1