Randomly sampling maximal itemsets

Sandy Moens, Bart Goethals
{"title":"Randomly sampling maximal itemsets","authors":"Sandy Moens, Bart Goethals","doi":"10.1145/2501511.2501523","DOIUrl":null,"url":null,"abstract":"Pattern mining techniques generally enumerate lots of uninteresting and redundant patterns. To obtain less redundant collections, techniques exist that give condensed representations of these collections. However, the proposed techniques often rely on complete enumeration of the pattern space, which can be prohibitive in terms of time and memory. Sampling can be used to filter the output space of patterns without explicit enumeration. We propose a framework for random sampling of maximal itemsets from transactional databases. The presented framework can use any monotonically decreasing measure as interestingness criteria for this purpose. Moreover, we use an approximation measure to guide the search for maximal sets to different parts of the output space. We show in our experiments that the method can rapidly generate small collections of patterns with good quality. The sampling framework has been implemented in the interactive visual data mining tool called MIME1, as such enabling users to quickly sample a collection of patterns and analyze the results.","PeriodicalId":126062,"journal":{"name":"Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501511.2501523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Pattern mining techniques generally enumerate lots of uninteresting and redundant patterns. To obtain less redundant collections, techniques exist that give condensed representations of these collections. However, the proposed techniques often rely on complete enumeration of the pattern space, which can be prohibitive in terms of time and memory. Sampling can be used to filter the output space of patterns without explicit enumeration. We propose a framework for random sampling of maximal itemsets from transactional databases. The presented framework can use any monotonically decreasing measure as interestingness criteria for this purpose. Moreover, we use an approximation measure to guide the search for maximal sets to different parts of the output space. We show in our experiments that the method can rapidly generate small collections of patterns with good quality. The sampling framework has been implemented in the interactive visual data mining tool called MIME1, as such enabling users to quickly sample a collection of patterns and analyze the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机抽样最大项目集
模式挖掘技术通常会列举出大量无趣和冗余的模式。为了获得较少冗余的集合,存在提供这些集合的浓缩表示的技术。然而,建议的技术通常依赖于模式空间的完整枚举,这在时间和内存方面可能是令人望而却步的。采样可以用来过滤模式的输出空间,而不需要显式枚举。我们提出了一个从事务性数据库中随机抽取最大项集的框架。提出的框架可以使用任何单调递减的度量作为兴趣度标准。此外,我们使用近似度量来指导搜索输出空间的不同部分的最大集合。实验表明,该方法可以快速生成质量良好的小块图案集合。采样框架已经在交互式可视化数据挖掘工具MIME1中实现,这样用户就可以快速采样一组模式并分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online spatial data analysis and visualization system Lytic: synthesizing high-dimensional algorithmic analysis with domain-agnostic, faceted visual analytics Towards anytime active learning: interrupting experts to reduce annotation costs Zips: mining compressing sequential patterns in streams Methods for exploring and mining tables on Wikipedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1