Towards anytime active learning: interrupting experts to reduce annotation costs

M. E. Ramirez-Loaiza, A. Culotta, M. Bilgic
{"title":"Towards anytime active learning: interrupting experts to reduce annotation costs","authors":"M. E. Ramirez-Loaiza, A. Culotta, M. Bilgic","doi":"10.1145/2501511.2501524","DOIUrl":null,"url":null,"abstract":"Many active learning methods use annotation cost or expert quality as part of their framework to select the best data for annotation. While these methods model expert quality, availability, or expertise, they have no direct influence on any of these elements. We present a novel framework built upon decision-theoretic active learning that allows the learner to directly control label quality by allocating a time budget to each annotation. We show that our method is able to improve performance efficiency of the active learner through an interruption mechanism trading off the induced error with the cost of annotation. Our simulation experiments on three document classification tasks show that some interruption is almost always better than none, but that the optimal interruption time varies by dataset.","PeriodicalId":126062,"journal":{"name":"Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics","volume":"79 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501511.2501524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Many active learning methods use annotation cost or expert quality as part of their framework to select the best data for annotation. While these methods model expert quality, availability, or expertise, they have no direct influence on any of these elements. We present a novel framework built upon decision-theoretic active learning that allows the learner to directly control label quality by allocating a time budget to each annotation. We show that our method is able to improve performance efficiency of the active learner through an interruption mechanism trading off the induced error with the cost of annotation. Our simulation experiments on three document classification tasks show that some interruption is almost always better than none, but that the optimal interruption time varies by dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随时主动学习:打断专家,降低注释成本
许多主动学习方法使用标注成本或专家质量作为其框架的一部分来选择最佳的数据进行标注。虽然这些方法对专家质量、可用性或专业知识进行建模,但它们对这些元素中的任何一个都没有直接影响。我们提出了一个基于决策理论主动学习的新框架,该框架允许学习者通过为每个注释分配时间预算来直接控制标签质量。我们的方法能够通过中断机制来权衡诱导误差和标注成本,从而提高主动学习器的性能效率。我们对三个文档分类任务的模拟实验表明,有一些中断几乎总是比没有中断好,但最佳中断时间因数据集而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online spatial data analysis and visualization system Lytic: synthesizing high-dimensional algorithmic analysis with domain-agnostic, faceted visual analytics Towards anytime active learning: interrupting experts to reduce annotation costs Zips: mining compressing sequential patterns in streams Methods for exploring and mining tables on Wikipedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1