Human Pose Prediction by Progressive Generation in Multi-scale Frequency Domain

Tomohiro Fujita, Yasutomo Kawanishi
{"title":"Human Pose Prediction by Progressive Generation in Multi-scale Frequency Domain","authors":"Tomohiro Fujita, Yasutomo Kawanishi","doi":"10.23919/MVA57639.2023.10215966","DOIUrl":null,"url":null,"abstract":"We address a problem of 3D human pose prediction from a sequence of human body skeletons. To model the spatio-temporal dynamics, the discrete cosine transform (DCT) and the graph convolutional networks (GCN) are often applied to signals on a human skeleton graph. By DCT, temporal information of a human skeleton sequence can be embedded into the frequency domain. However, in previous studies, the prediction models using DCT implicitly learned each frequency coefficient by gradients calculated from a loss of the predictions and the ground truths of human body skeletons. In this paper, we propose a progressive human pose prediction model in frequency domain so that explicitly predict high-, medium-, and low-frequency motion of a target person. We confirmed that the proposed method improves prediction accuracy through experiments using public datasets on Human3.6M and CMU Mocap datasets.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address a problem of 3D human pose prediction from a sequence of human body skeletons. To model the spatio-temporal dynamics, the discrete cosine transform (DCT) and the graph convolutional networks (GCN) are often applied to signals on a human skeleton graph. By DCT, temporal information of a human skeleton sequence can be embedded into the frequency domain. However, in previous studies, the prediction models using DCT implicitly learned each frequency coefficient by gradients calculated from a loss of the predictions and the ground truths of human body skeletons. In this paper, we propose a progressive human pose prediction model in frequency domain so that explicitly predict high-, medium-, and low-frequency motion of a target person. We confirmed that the proposed method improves prediction accuracy through experiments using public datasets on Human3.6M and CMU Mocap datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度频域渐进生成的人体姿态预测
我们解决了一个从人体骨骼序列中预测3D人体姿势的问题。为了模拟时空动态,离散余弦变换(DCT)和图形卷积网络(GCN)常被应用于人体骨架图上的信号。通过DCT,可以将人体骨骼序列的时间信息嵌入到频域。然而,在以前的研究中,使用DCT的预测模型通过从预测损失和人体骨骼的基本事实计算的梯度隐式学习每个频率系数。在本文中,我们提出了一种渐进式的频域人体姿态预测模型,以便明确地预测目标人的高、中、低频运动。我们通过在Human3.6M和CMU Mocap数据集上使用公共数据集的实验,证实了该方法提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small Object Detection for Birds with Swin Transformer CG-based dataset generation and adversarial image conversion for deep cucumber recognition Uncertainty Criteria in Active Transfer Learning for Efficient Video-Specific Human Pose Estimation Joint Learning with Group Relation and Individual Action Diabetic Retinopathy Grading based on a Sparse Network Fusion of Heterogeneous ConvNeXt Models with Category Attention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1