Facial Expression Recognition based on Convolutional Neural Network with Sparse Representation

Xuan Liu, Jiachen Ma, Qianqian Wang
{"title":"Facial Expression Recognition based on Convolutional Neural Network with Sparse Representation","authors":"Xuan Liu, Jiachen Ma, Qianqian Wang","doi":"10.1109/ICSAI57119.2022.10005481","DOIUrl":null,"url":null,"abstract":"Facial Expression Recognition (FER) in the wild using Convolutional Neural Networks (CNNs) has been a challenge for years because of the significant intra-class variances and interclass similarities. In contrast, facial expression recognition in the wild is vital for human-computer interactions and has numerous applications. Enhancing the discriminative features extraction ability is one approach to solving this issue. In this work, a sparse transform is used to improve a CNN’s ability to extract features without adding to the network’s computational load. We use a sparse representation layer that is built by the Haar wavelet transform or shearlet transform prior to the convolutional layers of a standard CNN. With the proposed sparse representation layers, we introduce a VGGNet and an AlexNet architecture and conduct experiments on the FER2013 dataset without the use of additional training data. The experimental results demonstrated that the wavelet transform’s sparse representation layer can improve FER performance without increasing an excessive computational burden. We achieved testing accuracy of 73.25 percent on the FER2013 dataset using VGGNet paired with a sparse representation layer built inside a wavelet transform, which is among the best results for a single network.","PeriodicalId":339547,"journal":{"name":"2022 8th International Conference on Systems and Informatics (ICSAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI57119.2022.10005481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Facial Expression Recognition (FER) in the wild using Convolutional Neural Networks (CNNs) has been a challenge for years because of the significant intra-class variances and interclass similarities. In contrast, facial expression recognition in the wild is vital for human-computer interactions and has numerous applications. Enhancing the discriminative features extraction ability is one approach to solving this issue. In this work, a sparse transform is used to improve a CNN’s ability to extract features without adding to the network’s computational load. We use a sparse representation layer that is built by the Haar wavelet transform or shearlet transform prior to the convolutional layers of a standard CNN. With the proposed sparse representation layers, we introduce a VGGNet and an AlexNet architecture and conduct experiments on the FER2013 dataset without the use of additional training data. The experimental results demonstrated that the wavelet transform’s sparse representation layer can improve FER performance without increasing an excessive computational burden. We achieved testing accuracy of 73.25 percent on the FER2013 dataset using VGGNet paired with a sparse representation layer built inside a wavelet transform, which is among the best results for a single network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示卷积神经网络的面部表情识别
由于类内差异和类间相似性显著,卷积神经网络(cnn)的面部表情识别(FER)多年来一直是一个挑战。相比之下,面部表情识别在野外对人机交互至关重要,并且有许多应用。提高识别特征提取能力是解决这一问题的途径之一。在这项工作中,使用稀疏变换来提高CNN在不增加网络计算负荷的情况下提取特征的能力。在标准CNN的卷积层之前,我们使用了一个由Haar小波变换或shearlet变换构建的稀疏表示层。利用提出的稀疏表示层,我们引入了VGGNet和AlexNet架构,并在FER2013数据集上进行了实验,而不使用额外的训练数据。实验结果表明,小波变换的稀疏表示层可以在不增加过多计算负担的情况下提高FER性能。我们在FER2013数据集上使用VGGNet与小波变换内构建的稀疏表示层配对,实现了73.25%的测试准确率,这是单个网络的最佳结果之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-hop Knowledge Base Q&A in Integrated Energy Services Based on Intermediate Reasoning Attention Wrong Wiring Detection of Electricity Meter Based on Image Processing Perturbation Analysis Based Simulation Approach for Electricity Market Research and Investigation Promoting a Hybrid Cryptosystem System’s Security based on Fresnel lens and RSA Algorithm Customer Portrait for Metrology Institutions Based on the Machine Learning Clustering Algorithm and the RFM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1