Latent fingerprint match using Minutia Spherical Coordinate Code

Fengde Zheng, Chunyu Yang
{"title":"Latent fingerprint match using Minutia Spherical Coordinate Code","authors":"Fengde Zheng, Chunyu Yang","doi":"10.1109/ICB.2015.7139061","DOIUrl":null,"url":null,"abstract":"This paper proposes a fingerprint match algorithm using Minutia Spherical Coordinate Code (MSCC). This algorithm is a modified version of Minutia Cylinder Code (MCC). The advantage of this algorithm is its compact feature representation. Binary vector of every minutia only needs 288 bits, while MCC needs 448 or 1792 bits. This algorithm also uses a greedy alignment approach which can rediscover minutiae pairs lost in original stage. Experiments on AFIS data and NIST special data27 demonstrate the effectiveness of the proposed approach. We compare this algorithm to MCC. The experiments show that MSCC has better matching accuracy than MCC. The average compressed feature size is 2.3 Kbytes, while the average compressed feature size of MCC is 4.84 Kbytes in NIST SD27.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes a fingerprint match algorithm using Minutia Spherical Coordinate Code (MSCC). This algorithm is a modified version of Minutia Cylinder Code (MCC). The advantage of this algorithm is its compact feature representation. Binary vector of every minutia only needs 288 bits, while MCC needs 448 or 1792 bits. This algorithm also uses a greedy alignment approach which can rediscover minutiae pairs lost in original stage. Experiments on AFIS data and NIST special data27 demonstrate the effectiveness of the proposed approach. We compare this algorithm to MCC. The experiments show that MSCC has better matching accuracy than MCC. The average compressed feature size is 2.3 Kbytes, while the average compressed feature size of MCC is 4.84 Kbytes in NIST SD27.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潜在指纹匹配使用Minutia球面坐标代码
提出了一种基于微球坐标码(MSCC)的指纹匹配算法。该算法是一种改进版的Minutia圆柱体代码(MCC)。该算法的优点是特征表示紧凑。每个细节的二进制矢量只需要288位,而MCC则需要448位或1792位。该算法还采用了贪婪对齐方法,可以重新发现原始阶段丢失的细节对。在AFIS数据和NIST专用数据27上的实验证明了该方法的有效性。我们将此算法与MCC进行比较。实验表明,MSCC比MCC具有更好的匹配精度。平均压缩特征大小为2.3 Kbytes,而NIST SD27中MCC的平均压缩特征大小为4.84 Kbytes。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1