{"title":"Information retrieval using local linear PCA","authors":"X.Q. Li, I. King","doi":"10.1109/ICONIP.1999.844651","DOIUrl":null,"url":null,"abstract":"Efficient and accurate information retrieval (IR) is one of the main issues in multimedia databases. Clustering can help to generate the efficient indexing structures and provide the comparison between data types. The Most Expressive Feature (MEF) extraction can improve comparison accuracy between two data which belong to a same data type since it discards redundant features. The authors introduce a local linear principal component analysis (LLPCA) to design an optimal scheme for IR. The LLPCA realizes the clustering and local MEF extraction at the same time. Using these clusters and local MEFs, an IR scheme can be divided into two steps from coarse to fine. We apply the scheme to a trademark retrieval system to evaluate its performance based on the accuracy and efficiency measurements. The experimental results indicate this retrieval scheme is superior the other schemes using the original features or global MEFs extracted by a Global Linear PCA (GLPCA).","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"96 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Efficient and accurate information retrieval (IR) is one of the main issues in multimedia databases. Clustering can help to generate the efficient indexing structures and provide the comparison between data types. The Most Expressive Feature (MEF) extraction can improve comparison accuracy between two data which belong to a same data type since it discards redundant features. The authors introduce a local linear principal component analysis (LLPCA) to design an optimal scheme for IR. The LLPCA realizes the clustering and local MEF extraction at the same time. Using these clusters and local MEFs, an IR scheme can be divided into two steps from coarse to fine. We apply the scheme to a trademark retrieval system to evaluate its performance based on the accuracy and efficiency measurements. The experimental results indicate this retrieval scheme is superior the other schemes using the original features or global MEFs extracted by a Global Linear PCA (GLPCA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部线性PCA信息检索
高效、准确的信息检索是多媒体数据库的主要问题之一。聚类可以帮助生成高效的索引结构,并提供数据类型之间的比较。最具表现力的特征(MEF)提取由于抛弃了冗余特征,可以提高属于同一数据类型的两个数据之间的比较准确性。作者引入了局部线性主成分分析(LLPCA)来设计IR的最优方案。LLPCA同时实现了聚类和局部MEF提取。利用这些簇和局部mef,红外方案可以分为从粗到细两个步骤。将该方案应用到商标检索系统中,从准确性和效率两个方面对其性能进行了评价。实验结果表明,该检索方案优于其他利用原始特征或利用全局线性主成分分析(GLPCA)提取全局mef的检索方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1