gtfs2vec: Learning GTFS Embeddings for comparing Public Transport Offer in Microregions

Piotr Gramacki, Szymon Wo'zniak, Piotr Szyma'nski
{"title":"gtfs2vec: Learning GTFS Embeddings for comparing Public Transport Offer in Microregions","authors":"Piotr Gramacki, Szymon Wo'zniak, Piotr Szyma'nski","doi":"10.1145/3486640.3491392","DOIUrl":null,"url":null,"abstract":"We selected 48 European cities and gathered their public transport timetables in the GTFS format. We utilized Uber's H3 spatial index to divide each city into hexagonal micro-regions. Based on the timetables data we created certain features describing the quantity and variety of public transport availability in each region. Next, we trained an auto-associative deep neural network to embed each of the regions. Having such prepared representations, we then used a hierarchical clustering approach to identify similar regions. To do so, we utilized an agglomerative clustering algorithm with a euclidean distance between regions and Ward's method to minimize in-cluster variance. Finally, we analyzed the obtained clusters at different levels to identify some number of clusters that qualitatively describe public transport availability. We showed that our typology matches the characteristics of analyzed cities and allows succesful searching for areas with similar public transport schedule characteristics.","PeriodicalId":315583,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Searching and Mining Large Collections of Geospatial Data","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Searching and Mining Large Collections of Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486640.3491392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We selected 48 European cities and gathered their public transport timetables in the GTFS format. We utilized Uber's H3 spatial index to divide each city into hexagonal micro-regions. Based on the timetables data we created certain features describing the quantity and variety of public transport availability in each region. Next, we trained an auto-associative deep neural network to embed each of the regions. Having such prepared representations, we then used a hierarchical clustering approach to identify similar regions. To do so, we utilized an agglomerative clustering algorithm with a euclidean distance between regions and Ward's method to minimize in-cluster variance. Finally, we analyzed the obtained clusters at different levels to identify some number of clusters that qualitatively describe public transport availability. We showed that our typology matches the characteristics of analyzed cities and allows succesful searching for areas with similar public transport schedule characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gtfs2vec:学习GTFS嵌入来比较微区域的公共交通服务
我们选择了48个欧洲城市,并以GTFS格式收集了它们的公共交通时间表。我们利用Uber的H3空间指数将每个城市划分为六边形微区域。根据时间表数据,我们创建了描述每个地区可用公共交通的数量和种类的某些特征。接下来,我们训练了一个自关联深度神经网络来嵌入每个区域。有了这样的准备表示,我们然后使用分层聚类方法来识别相似的区域。为此,我们使用了一种具有区域之间欧几里得距离的聚类算法和Ward方法来最小化聚类内方差。最后,我们分析了在不同层次上获得的集群,以确定定性描述公共交通可用性的集群数量。我们发现,我们的类型学与所分析城市的特征相匹配,并允许成功搜索具有相似公共交通时间表特征的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Al-based Spatial Knowledge Graph for Enhancing Spatial Data and Knowledge Search and Discovery FAIR Interfaces for Geospatial Scientific Data Searches Joining Street-View Images and Building Footprint GIS Data gtfs2vec: Learning GTFS Embeddings for comparing Public Transport Offer in Microregions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1