{"title":"An extended hydrodynamic model for silicon nano wires","authors":"O. Muscato, V. Stefano","doi":"10.1109/IWCE.2012.6401951","DOIUrl":null,"url":null,"abstract":"We present an extended hydrodynamic model describing the transport of electrons in the axial direction of a silicon nanowire. This model has been formulated by closing the moment system derived from the Boltzmann equations on the basis of the maximum entropy principle of Extended Thermodynamics, coupled to the Effective Mass and Poisson equations. Explicit closure relations for the high-order fluxes and the production terms are obtained without any fitting procedure, including scattering of electrons with acoustic and non polar optical phonons. By using this model, thermoelectric effects have been investigated.","PeriodicalId":375453,"journal":{"name":"2012 15th International Workshop on Computational Electronics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2012.6401951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present an extended hydrodynamic model describing the transport of electrons in the axial direction of a silicon nanowire. This model has been formulated by closing the moment system derived from the Boltzmann equations on the basis of the maximum entropy principle of Extended Thermodynamics, coupled to the Effective Mass and Poisson equations. Explicit closure relations for the high-order fluxes and the production terms are obtained without any fitting procedure, including scattering of electrons with acoustic and non polar optical phonons. By using this model, thermoelectric effects have been investigated.