{"title":"Twitter Sentiment Analysis: A Bootstrap Ensemble Framework","authors":"Ammar Hassan, A. Abbasi, D. Zeng","doi":"10.1109/SocialCom.2013.56","DOIUrl":null,"url":null,"abstract":"Twitter sentiment analysis has become widely popular. However, stable Twitter sentiment classification performance remains elusive due to several issues: heavy class imbalance in a multi-class problem, representational richness issues for sentiment cues, and the use of diverse colloquial linguistic patterns. These issues are problematic since many forms of social media analytics rely on accurate underlying Twitter sentiments. Accordingly, a text analytics framework is proposed for Twitter sentiment analysis. The framework uses an elaborate bootstrapping ensemble to quell class imbalance, sparsity, and representational richness issues. Experiment results reveal that the proposed approach is more accurate and balanced in its predictions across sentiment classes, as compared to various comparison tools and algorithms. Consequently, the bootstrapping ensemble framework is able to build sentiment time series that are better able to reflect events eliciting strong positive and negative sentiments from users. Considering the importance of Twitter as one of the premiere social media platforms, the results have important implications for social media analytics and social intelligence.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 143
Abstract
Twitter sentiment analysis has become widely popular. However, stable Twitter sentiment classification performance remains elusive due to several issues: heavy class imbalance in a multi-class problem, representational richness issues for sentiment cues, and the use of diverse colloquial linguistic patterns. These issues are problematic since many forms of social media analytics rely on accurate underlying Twitter sentiments. Accordingly, a text analytics framework is proposed for Twitter sentiment analysis. The framework uses an elaborate bootstrapping ensemble to quell class imbalance, sparsity, and representational richness issues. Experiment results reveal that the proposed approach is more accurate and balanced in its predictions across sentiment classes, as compared to various comparison tools and algorithms. Consequently, the bootstrapping ensemble framework is able to build sentiment time series that are better able to reflect events eliciting strong positive and negative sentiments from users. Considering the importance of Twitter as one of the premiere social media platforms, the results have important implications for social media analytics and social intelligence.