Impact of Sensors on Collision Risk Prediction for Non-Cooperative Traffic in Terminal Airspace

C. H. John Wang, S. K. Tan, Lynette Koay Jie Ting, Kin Huat Low
{"title":"Impact of Sensors on Collision Risk Prediction for Non-Cooperative Traffic in Terminal Airspace","authors":"C. H. John Wang, S. K. Tan, Lynette Koay Jie Ting, Kin Huat Low","doi":"10.1109/ICUAS.2018.8453424","DOIUrl":null,"url":null,"abstract":"The availability of off the shelf, easy to control, unmanned aerial systems (UAS) on the market has led to an increase in report of UAS incursion into terminal airspace. Such incursions often lead to airport shutdowns due to safety concern and could cause a cascading disruption to airline operations throughout the region. A better assessment tool for the collision risk between the existing air traffic and the intruder could help reduce unnecessary disruption to air traffic operations. Work has been done on the assessment of such risk using probabilistic UAS positions prediction based on Monte-Carlo simulations, under the assumption of a non-cooperative intruder with worst-case intention aiming at the flight corridor. Alert areas around the runway and the aircraft flight path could be constructed using the collision prediction method, albeit only valid under specific conditions. The accuracy of the predictions could be further improved with the incorporation of ground-based tracking equipment. This paper looks into how the availability of UAS tracking information could be used to complement the collision prediction algorithm, and how its inclusion affects the collision risk assessment.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The availability of off the shelf, easy to control, unmanned aerial systems (UAS) on the market has led to an increase in report of UAS incursion into terminal airspace. Such incursions often lead to airport shutdowns due to safety concern and could cause a cascading disruption to airline operations throughout the region. A better assessment tool for the collision risk between the existing air traffic and the intruder could help reduce unnecessary disruption to air traffic operations. Work has been done on the assessment of such risk using probabilistic UAS positions prediction based on Monte-Carlo simulations, under the assumption of a non-cooperative intruder with worst-case intention aiming at the flight corridor. Alert areas around the runway and the aircraft flight path could be constructed using the collision prediction method, albeit only valid under specific conditions. The accuracy of the predictions could be further improved with the incorporation of ground-based tracking equipment. This paper looks into how the availability of UAS tracking information could be used to complement the collision prediction algorithm, and how its inclusion affects the collision risk assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器对终端空域非合作交通碰撞风险预测的影响
市场上现成的、易于控制的无人机系统(UAS)的可用性导致了UAS入侵终端空域的报告增加。出于安全考虑,这种入侵通常会导致机场关闭,并可能对整个地区的航空公司运营造成连锁影响。一个更好的评估现有空中交通与入侵者之间碰撞风险的工具可以帮助减少对空中交通运营的不必要干扰。利用基于蒙特卡罗模拟的无人机位置概率预测方法对这种风险进行了评估,假设有一个不合作的入侵者带着最坏情况的意图瞄准飞行走廊。碰撞预测方法可以在跑道和飞机飞行路径周围构建警戒区域,但仅在特定条件下有效。结合地面跟踪设备可以进一步提高预测的准确性。本文研究了如何利用无人机跟踪信息的可用性来补充碰撞预测算法,以及它的包含如何影响碰撞风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization and Optimal Trajectory Generation for a Compact Aerial Manipulation System with a Delta-type Parallel Robot Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning Nonlinear Flight Control Design for Maneuvering Flight of Quadrotors in High Speed and Large Acceleration Integrated Navigation Based on DME+VOR/INS Under the Integrated Radio Condition Vision-based Integrated Navigation System and Optimal Allocation in Formation Flying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1