Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

R. Precup, Raul-Cristian Roman, Elena-Lorena Hedrea, C. Dragos, Miruna-Maria Damian, Monica-Lavinia Nedelcea
{"title":"Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems","authors":"R. Precup, Raul-Cristian Roman, Elena-Lorena Hedrea, C. Dragos, Miruna-Maria Damian, Monica-Lavinia Nedelcea","doi":"10.15837/ijccc.2022.1.4623","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2022.1.4623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低成本迭代学习的塔机模糊控制系统性能改进
谨以此文纪念本刊创始人之一、创刊总编辑Ioan Dzitac教授。本文研究了三种单输入-单输出(SISO)模糊控制系统的性能改进,分别控制塔机系统的感兴趣位置,即小车位置、臂角位置和有效载荷位置。采用Takagi-Sugeno-Kang比例导数(PD)模糊项的一阶离散智能比例积分(PI)控制器,采用三个独立的低成本SISO模糊控制器。具有PD学习函数的迭代学习控制(ILC)系统结构涉及到当前迭代的SISO ILC结构。为了调整学习函数的参数,定义了优化问题。将目标函数定义为控制误差的平方和,并使用最近的元启发式黏菌算法(SMA)在迭代域中求解目标函数。实验结果表明,经过10次SMA迭代后,SISO控制系统的性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of an Efficient Demographic-based Movie Recommender System using Hybrid Machine Learning Techniques Resource manager for heterogeneous processors Fault Diagnosis and Localization of Transmission Lines Based on R-Net Algorithm Optimized by Feature Pyramid Network Holiday Peak Load Forecasting Using Grammatical Evolution-Based Fuzzy Regression Approach A Data-Driven Assessment Model for Metaverse Maturity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1