Design and Development of an Efficient Demographic-based Movie Recommender System using Hybrid Machine Learning Techniques

Vishal Paranjape, Neelu Nihalani, Nishchol Mishra
{"title":"Design and Development of an Efficient Demographic-based Movie Recommender System using Hybrid Machine Learning Techniques","authors":"Vishal Paranjape, Neelu Nihalani, Nishchol Mishra","doi":"10.15837/ijccc.2024.4.5840","DOIUrl":null,"url":null,"abstract":"Movie Recommender systems are frequently used in academics and industry to give users with relevant, engaging material based on their rating history. However, most traditional methods suffer from the cold-start problem, which is the initial lack of item ratings and data sparsity. The Hybrid Machine Learning (ML) technique is proposed for a movie recommendation system. Demographic data is collected from the Movie Lens dataset, and attributes are evaluated using the Attribute Analysis module. The Aquila Optimization Algorithm is used to select the best attributes, while Random Forest classifier is used for classification. Data is clustered using Fuzzy Probabilistic Cmeans Clustering Algorithm (FPCCA), and the Correspondence Index Assessment Phase (CIAP) uses Bhattacharyya Coefficient in Collaborative Filtering (BCCF) for similarity index calculation. The Outcomes gives the proposed method obtained low error, such as MAE has 0.44, RMSE has 0.63 compared with the baseline methods.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"28 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2024.4.5840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Movie Recommender systems are frequently used in academics and industry to give users with relevant, engaging material based on their rating history. However, most traditional methods suffer from the cold-start problem, which is the initial lack of item ratings and data sparsity. The Hybrid Machine Learning (ML) technique is proposed for a movie recommendation system. Demographic data is collected from the Movie Lens dataset, and attributes are evaluated using the Attribute Analysis module. The Aquila Optimization Algorithm is used to select the best attributes, while Random Forest classifier is used for classification. Data is clustered using Fuzzy Probabilistic Cmeans Clustering Algorithm (FPCCA), and the Correspondence Index Assessment Phase (CIAP) uses Bhattacharyya Coefficient in Collaborative Filtering (BCCF) for similarity index calculation. The Outcomes gives the proposed method obtained low error, such as MAE has 0.44, RMSE has 0.63 compared with the baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合机器学习技术设计和开发基于人口统计的高效电影推荐系统
电影推荐系统经常被用于学术界和工业界,根据用户的评分记录为其提供相关的、吸引人的资料。然而,大多数传统方法都存在冷启动问题,即最初缺乏项目评级和数据稀疏。本文针对电影推荐系统提出了混合机器学习(ML)技术。从电影镜头数据集中收集人口统计学数据,并使用属性分析模块对属性进行评估。Aquila 优化算法用于选择最佳属性,而随机森林分类器则用于分类。数据使用模糊概率均值聚类算法(FPCCA)进行聚类,对应指数评估阶段(CIAP)使用巴塔查里亚协同过滤系数(BCCF)计算相似性指数。结果表明,与基线方法相比,拟议方法的误差较小,如 MAE 为 0.44,RMSE 为 0.63。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of an Efficient Demographic-based Movie Recommender System using Hybrid Machine Learning Techniques Resource manager for heterogeneous processors Fault Diagnosis and Localization of Transmission Lines Based on R-Net Algorithm Optimized by Feature Pyramid Network Holiday Peak Load Forecasting Using Grammatical Evolution-Based Fuzzy Regression Approach A Data-Driven Assessment Model for Metaverse Maturity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1