{"title":"A Machine Learning Model to Identify Insulin Resistance in Humans","authors":"Madam Chakradar, Alok Aggarwal","doi":"10.1109/CENTCON52345.2021.9688098","DOIUrl":null,"url":null,"abstract":"T2DM is a large challenge because it's predicted to affect 693 million people by 2045. There is currently no simple or non-invasive method to measure and quantify insulin resistance. Following the release of non-invasive devices that track glucose levels, one might be able to identify insulin resistance without having to use invasive medical tests. In this work, insulin resistance is recognized based on non-invasive techniques. Eighteen parameters are used to identify a person with a high likelihood of insulin resistance: consisting of age, gender, waist size, height, etc., and an aggregate of those parameters. Each output of a function choices technique is modeled using a range of algorithms, including logistic regression, CARTs, SVM, LDA, KNN, etc on CALERIE study dataset and the findings are verified over stratified cross-validation. And in comparison, to 66% Bernardini et al & Stawiski et al, 61% Zheng et al, and 83% Farran et al, the accuracy of different variations for the identification of insulin resistance. Another advantage of the proposed approach is that an individual can also predict insulin resistance daily, which in turn will allow physicians to monitor diabetes risk more accurately. While the identical isn't always almost feasible with medical procedures.","PeriodicalId":103865,"journal":{"name":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENTCON52345.2021.9688098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
T2DM is a large challenge because it's predicted to affect 693 million people by 2045. There is currently no simple or non-invasive method to measure and quantify insulin resistance. Following the release of non-invasive devices that track glucose levels, one might be able to identify insulin resistance without having to use invasive medical tests. In this work, insulin resistance is recognized based on non-invasive techniques. Eighteen parameters are used to identify a person with a high likelihood of insulin resistance: consisting of age, gender, waist size, height, etc., and an aggregate of those parameters. Each output of a function choices technique is modeled using a range of algorithms, including logistic regression, CARTs, SVM, LDA, KNN, etc on CALERIE study dataset and the findings are verified over stratified cross-validation. And in comparison, to 66% Bernardini et al & Stawiski et al, 61% Zheng et al, and 83% Farran et al, the accuracy of different variations for the identification of insulin resistance. Another advantage of the proposed approach is that an individual can also predict insulin resistance daily, which in turn will allow physicians to monitor diabetes risk more accurately. While the identical isn't always almost feasible with medical procedures.
2型糖尿病是一个巨大的挑战,因为预计到2045年将有6.93亿人受到影响。目前还没有简单或无创的方法来测量和量化胰岛素抵抗。随着追踪血糖水平的非侵入性设备的发布,人们可能能够在不使用侵入性医学测试的情况下识别胰岛素抵抗。在这项工作中,胰岛素抵抗是基于非侵入性技术识别的。18个参数用于识别胰岛素抵抗可能性高的人:包括年龄、性别、腰围大小、身高等,以及这些参数的总和。函数选择技术的每个输出都使用一系列算法建模,包括CALERIE研究数据集上的逻辑回归,cart, SVM, LDA, KNN等,并通过分层交叉验证验证结果。相比之下,66% Bernardini et al & Stawiski et al, 61% Zheng et al, 83% Farran et al,不同变异对胰岛素抵抗识别的准确性。该方法的另一个优点是,个人还可以每天预测胰岛素抵抗,从而使医生能够更准确地监测糖尿病风险。然而,在医疗过程中,这并不总是可行的。