Yedalog: Exploring Knowledge at Scale

Brian Chin, D. V. Dincklage, V. Ercegovac, Peter Hawkins, Mark S. Miller, F. Och, Christopher Olston, Fernando C Pereira
{"title":"Yedalog: Exploring Knowledge at Scale","authors":"Brian Chin, D. V. Dincklage, V. Ercegovac, Peter Hawkins, Mark S. Miller, F. Och, Christopher Olston, Fernando C Pereira","doi":"10.4230/LIPIcs.SNAPL.2015.63","DOIUrl":null,"url":null,"abstract":"With huge progress on data processing frameworks, human programmers are frequently the bottleneck when analyzing large repositories of data. We introduce Yedalog, a declarative programming language that allows programmers to mix data-parallel pipelines and computation seamlessly in a single language. By contrast, most existing tools for data-parallel computation embed a sublanguage of data-parallel pipelines in a general-purpose language, or vice versa. Yedalog extends Datalog, incorporating not only computational features from logic programming, but also features for working with data structured as nested records. Yedalog programs can run both on a single machine, and distributed across a cluster in batch and interactive modes, allowing programmers to mix dierent modes of execution easily. 1998 ACM Subject Classification D.3.2 Data-flow languages, Constraint and Logic Languages","PeriodicalId":231548,"journal":{"name":"Summit on Advances in Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on Advances in Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SNAPL.2015.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

With huge progress on data processing frameworks, human programmers are frequently the bottleneck when analyzing large repositories of data. We introduce Yedalog, a declarative programming language that allows programmers to mix data-parallel pipelines and computation seamlessly in a single language. By contrast, most existing tools for data-parallel computation embed a sublanguage of data-parallel pipelines in a general-purpose language, or vice versa. Yedalog extends Datalog, incorporating not only computational features from logic programming, but also features for working with data structured as nested records. Yedalog programs can run both on a single machine, and distributed across a cluster in batch and interactive modes, allowing programmers to mix dierent modes of execution easily. 1998 ACM Subject Classification D.3.2 Data-flow languages, Constraint and Logic Languages
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yedalog:大规模探索知识
随着数据处理框架的巨大进步,在分析大型数据存储库时,人类程序员经常成为瓶颈。我们介绍Yedalog,一种声明式编程语言,它允许程序员在一种语言中无缝地混合数据并行管道和计算。相比之下,大多数现有的数据并行计算工具在通用语言中嵌入数据并行管道的子语言,反之亦然。Yedalog扩展了Datalog,不仅包含了逻辑编程的计算特性,还包含了处理作为嵌套记录结构的数据的特性。Yedalog程序既可以在单台机器上运行,也可以以批处理和交互模式分布在集群上,允许程序员轻松地混合不同的执行模式。1998 ACM学科分类D.3.2数据流语言、约束和逻辑语言
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From Theory to Systems: A Grounded Approach to Programming Language Education Linking Types for Multi-Language Software: Have Your Cake and Eat It Too AP: Artificial Programming Fission: Secure Dynamic Code-Splitting for JavaScript Migratory Typing: Ten Years Later
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1