On the spatial inhomogeneity of fingerprint minutiae: A regression approach

Shuiwang Li, Yi Alice Wang, Qijun Zhao, Yi Zhang
{"title":"On the spatial inhomogeneity of fingerprint minutiae: A regression approach","authors":"Shuiwang Li, Yi Alice Wang, Qijun Zhao, Yi Zhang","doi":"10.1109/ICB.2015.7139064","DOIUrl":null,"url":null,"abstract":"Fingerprint minutiae distribution plays a critical role in studies such as fingerprint individuality for strengthening the scientific validity of fingerprint evidence and generating synthetic fingerprints for large-scale system evaluations. Fingerprint minutiae are not uniformly distributed as once assumed. Spatial inhomogeneity has been found in minutiae distribution, yet it is not clear what underlies the pattern and affects the random process. In this paper, we quantitatively study the spatial inhomogeneity of minutiae distribution with respect to the level-1 features of singular points and ridge orientation field. We propose a minutiae intensity function to measure the spatial inhomogeneity and a kernel regression model to characterize the relationship between minutiae intensity and the level-1 features. Our statistical experiments on benchmark fingerprint databases show that: 1) the examined level-1 features partially explain regular variation of minutiae spatial distribution; 2) there remain significant fraction of variations unexplained, suggesting additional propositions. These results provide better understanding of the experiential probability of a random correspondence for fingerprint minutiae distribution modelling.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fingerprint minutiae distribution plays a critical role in studies such as fingerprint individuality for strengthening the scientific validity of fingerprint evidence and generating synthetic fingerprints for large-scale system evaluations. Fingerprint minutiae are not uniformly distributed as once assumed. Spatial inhomogeneity has been found in minutiae distribution, yet it is not clear what underlies the pattern and affects the random process. In this paper, we quantitatively study the spatial inhomogeneity of minutiae distribution with respect to the level-1 features of singular points and ridge orientation field. We propose a minutiae intensity function to measure the spatial inhomogeneity and a kernel regression model to characterize the relationship between minutiae intensity and the level-1 features. Our statistical experiments on benchmark fingerprint databases show that: 1) the examined level-1 features partially explain regular variation of minutiae spatial distribution; 2) there remain significant fraction of variations unexplained, suggesting additional propositions. These results provide better understanding of the experiential probability of a random correspondence for fingerprint minutiae distribution modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
指纹细节的空间非均匀性:一种回归方法
指纹细节分布对于增强指纹证据的科学有效性和生成用于大规模系统评价的合成指纹具有重要意义。指纹细节并不像以前假设的那样均匀分布。在细部分布中发现了空间不均匀性,但尚不清楚是什么导致了这种模式并影响了随机过程。本文从奇异点和脊方向场的一级特征出发,定量研究了细部分布的空间非均匀性。在此基础上,我们提出了一种测量空间非均匀性的细部强度函数和一种描述细部强度与一级特征之间关系的核回归模型。我们在基准指纹数据库上的统计实验表明:①所检验的一级特征部分解释了细微特征空间分布的规律性变化;2)仍然有相当一部分的变化无法解释,这表明了额外的命题。这些结果为指纹细节分布建模的随机对应的经验概率提供了更好的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1