Towards an unsupervised morphological segmenter for isiXhosa

Lulamile Mzamo, A.S. Helberg, Sonja E. Bosch
{"title":"Towards an unsupervised morphological segmenter for isiXhosa","authors":"Lulamile Mzamo, A.S. Helberg, Sonja E. Bosch","doi":"10.1109/ROBOMECH.2019.8704816]","DOIUrl":null,"url":null,"abstract":"In this paper, branching entropy techniques and isiXhosa language heuristics are adapted to develop unsupervised morphological segmenters for isiXhosa. An overview of isiXhosa segmentation issues is given, followed by a discussion on previous work in automated segmentation, and segmentation of isiXhosa in particular. Two unsupervised isiXhosa segmenters are presented and compared to a random minimum baseline and Morfessor-Baseline, a standard in unsupervised word segmentation. Morfessor-Baseline outperforms both isiXhosa segmenters at 79.10% boundary identification accuracy. The IsiXhosa Branching Entropy Segmenter (XBES) performance varies depending on the segmentation mode used, with a maximum of 73.39%. The IsiXhosa Heuristic Maximum Likelihood Segmenter (XHMLS) achieves 72.42%. The study suggests that unsupervised isiXhosa morphological segmentation is feasible with better optimization of the current attempts.","PeriodicalId":344332,"journal":{"name":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOMECH.2019.8704816]","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, branching entropy techniques and isiXhosa language heuristics are adapted to develop unsupervised morphological segmenters for isiXhosa. An overview of isiXhosa segmentation issues is given, followed by a discussion on previous work in automated segmentation, and segmentation of isiXhosa in particular. Two unsupervised isiXhosa segmenters are presented and compared to a random minimum baseline and Morfessor-Baseline, a standard in unsupervised word segmentation. Morfessor-Baseline outperforms both isiXhosa segmenters at 79.10% boundary identification accuracy. The IsiXhosa Branching Entropy Segmenter (XBES) performance varies depending on the segmentation mode used, with a maximum of 73.39%. The IsiXhosa Heuristic Maximum Likelihood Segmenter (XHMLS) achieves 72.42%. The study suggests that unsupervised isiXhosa morphological segmentation is feasible with better optimization of the current attempts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种无监督形态分词的研究
本文采用分支熵技术和isiXhosa语言启发式方法来开发isiXhosa语言的无监督形态分词。概述了isiXhosa分割问题,然后讨论了以前在自动分割方面的工作,特别是isiXhosa分割。提出了两个无监督isiXhosa分词器,并将其与随机最小基线和无监督分词标准Morfessor-Baseline进行了比较。morprof - baseline以79.10%的边界识别准确率优于两种isiXhosa分割器。IsiXhosa分支熵分割器(XBES)的性能根据所使用的分割模式而变化,最高可达73.39%。IsiXhosa启发式最大似然分割(XHMLS)达到72.42%。研究表明,通过对现有方法的优化,无监督isiXhosa形态学分割是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed Framework for Programming the Artificial Intelligence of Mobile Robots in Smart Manufacturing Systems Multi-Class Weather Classification from Still Image Using Said Ensemble Method Three-Phase Five-Limb Transformer Harmonic Analysis under DC-bias Modelling of a MMC HVDC Link between Koeberg Power Station and Cape Town - Experiences in simulation Comparison Between A Three and Two Level Inverter Variable Flux Machine Drives For Traction Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1