Context models in the MDL framework

E. Ristad, Robert G. Thomas
{"title":"Context models in the MDL framework","authors":"E. Ristad, Robert G. Thomas","doi":"10.1109/DCC.1995.515496","DOIUrl":null,"url":null,"abstract":"Current approaches to speech and handwriting recognition demand a strong language model with a small number of states and an even smaller number of parameters. We introduce four new techniques for statistical language models: multicontextual modeling, nonmonotonic contexts, implicit context growth, and the divergence heuristic. Together these techniques result in language models that have few states, even fewer parameters, and low message entropies. For example, our techniques achieve a message entropy of 2.16 bits/char on the Brown corpus using only 19374 contexts and 54621 parameters. Multicontextual modeling and nonmonotonic contexts, are generalizations of the traditional context model. Implicit context growth ensures that the state transition probabilities of a variable-length Markov process are estimated accurately. This technique is generally applicable to any variable-length Markov process whose state transition probabilities are estimated from string frequencies. In our case, each state in the Markov process represents a context, and implicit context growth conditions the shorter contexts on the fact that the longer contexts did not occur. In a traditional unicontext model, this technique reduces the message entropy of typical English text by 0.1 bits/char. The divergence heuristic, is a heuristic estimation algorithm based on Rissanen's (1978, 1983) minimum description length (MDL) principle and universal data compression algorithm.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Current approaches to speech and handwriting recognition demand a strong language model with a small number of states and an even smaller number of parameters. We introduce four new techniques for statistical language models: multicontextual modeling, nonmonotonic contexts, implicit context growth, and the divergence heuristic. Together these techniques result in language models that have few states, even fewer parameters, and low message entropies. For example, our techniques achieve a message entropy of 2.16 bits/char on the Brown corpus using only 19374 contexts and 54621 parameters. Multicontextual modeling and nonmonotonic contexts, are generalizations of the traditional context model. Implicit context growth ensures that the state transition probabilities of a variable-length Markov process are estimated accurately. This technique is generally applicable to any variable-length Markov process whose state transition probabilities are estimated from string frequencies. In our case, each state in the Markov process represents a context, and implicit context growth conditions the shorter contexts on the fact that the longer contexts did not occur. In a traditional unicontext model, this technique reduces the message entropy of typical English text by 0.1 bits/char. The divergence heuristic, is a heuristic estimation algorithm based on Rissanen's (1978, 1983) minimum description length (MDL) principle and universal data compression algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MDL框架中的上下文模型
当前的语音和手写识别方法需要一个具有少量状态和更少参数的强语言模型。我们介绍了统计语言模型的四种新技术:多上下文建模、非单调上下文、隐含上下文增长和发散启发式。这些技术结合在一起,产生了状态更少、参数更少、消息熵更低的语言模型。例如,我们的技术仅使用19374个上下文和54621个参数在Brown语料库上实现了2.16位/字符的消息熵。多上下文建模和非单调上下文是传统上下文模型的推广。隐式上下文增长保证了变长马尔可夫过程状态转移概率的准确估计。该方法一般适用于任何由弦频率估计状态转移概率的变长马尔可夫过程。在我们的例子中,马尔可夫过程中的每个状态都代表一个上下文,隐式上下文的增长以较长的上下文没有发生为前提,为较短的上下文提供条件。在传统的单上下文模型中,该技术将典型英语文本的消息熵降低了0.1 bits/char。散度启发式算法是一种基于Rissanen(1978, 1983)最小描述长度(MDL)原理和通用数据压缩算法的启发式估计算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplication-free subband coding of color images Constraining the size of the instantaneous alphabet in trellis quantizers Classified conditional entropy coding of LSP parameters Lattice-based designs of direct sum codebooks for vector quantization On the performance of affine index assignments for redundancy free source-channel coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1